题目内容
18.点M (3,-2,1)关于平面yOz对称的点的坐标是( )| A. | (-3,-2,1 ) | B. | (-3,2,-1) | C. | (-3,-2,-1) | D. | (-3,2,1) |
分析 点M(a,b,c)关于平面yOz对称的点的坐标是(-a,b,c).
解答 解:由空间直角坐标系的性质知:
点M (3,-2,1)关于平面yOz对称的点的坐标是(-3,-2,1).
故选:A.
点评 本题考查点的坐标的求法,是基础题,解题时要认真审题,注意空间直角坐标系的性质的合理运用.
练习册系列答案
相关题目
8.某交警大队对辖区A路段在连续10天内的n天,对过往车辆驾驶员进行血液酒精浓度检查,查得驾驶员酒驾率f(n)如表;
可用线性回归模型拟合f(n)与n的关系.
(1)建立f(n)关于n的回归方程;
(2)该交警大队将在2016年12月11日至20日和21日至30日对A路段过往车辆驾驶员进行血液酒精浓度检查,分别检查n1,n2天,其中n1,n2都是从8,9,10中随机选择一个,用回归方程结果求两阶段查得的驾驶员酒驾率都不超过0.03的概率.
附注:
参考数据:$\sum_{n=5}^9{nf(n)=1.51}$,$\sum_{n=5}^9{{n^2}=255}$,$\overline{f(n)}$=0.046,回归方程$\widehat{f(n)}$=$\widehat{b}$n+$\widehat{a}$中斜率和截距最小乘估计公式分别为:$\widehatb=\frac{{\sum_{n=5}^9{nf(n)-5\overline{nf(n)}}}}{{\sum_{n=5}^9{{n^2}-5{{\overline n}^2}}}}$,$\widehata=\overline{f(n)}$-$\widehatb\overline n$.
| n | 5 | 6 | 7 | 8 | 9 |
| f(n) | 0.06 | 0.06 | 0.05 | 0.04 | 0.02 |
(1)建立f(n)关于n的回归方程;
(2)该交警大队将在2016年12月11日至20日和21日至30日对A路段过往车辆驾驶员进行血液酒精浓度检查,分别检查n1,n2天,其中n1,n2都是从8,9,10中随机选择一个,用回归方程结果求两阶段查得的驾驶员酒驾率都不超过0.03的概率.
附注:
参考数据:$\sum_{n=5}^9{nf(n)=1.51}$,$\sum_{n=5}^9{{n^2}=255}$,$\overline{f(n)}$=0.046,回归方程$\widehat{f(n)}$=$\widehat{b}$n+$\widehat{a}$中斜率和截距最小乘估计公式分别为:$\widehatb=\frac{{\sum_{n=5}^9{nf(n)-5\overline{nf(n)}}}}{{\sum_{n=5}^9{{n^2}-5{{\overline n}^2}}}}$,$\widehata=\overline{f(n)}$-$\widehatb\overline n$.
6.对任意非零实数a、b,若a?b的运算原理如图所示,则(log28)?($\frac{1}{2}$)2=( ) 
| A. | 16 | B. | 15 | C. | 14 | D. | 13 |