题目内容
设数列{an}的前n项和为Sn,且满足Sn=2-an,n
N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{ b
}满足b
=1,且b
= b
+a
,求数列{ b
}的通项公式;
(Ⅲ)设cn=n(3- b
),求数列{ cn}的前n项和Tn.
(1)a
=S
=1 n≥2时,S
=2- a
S
=2- a
a
= - a
+ a
2 a
= a
∵a
=1
=
∴a
=(
)
……4分
(2)b
-b
=(
)
∴b
-b
= (
)0+……+(
)![]()
=![]()
=2-![]()
∴b
=3-
∵b
=1 成立
∴b
=3-(
)
…………9分
(3)c
=n(
)
T
=1×(
)
+2(
)
+……+n(
)![]()
T
=1×(
)
+……+(n-1) (
)
+n(
)![]()
![]()
T
=2+
-n(
)![]()
=2+2-(
)
-n(
)![]()
∴T
=8-
-
=8-
……………………………………14分
练习册系列答案
相关题目