题目内容
6.已知点A(2,0),抛物线y=x2-4上另外存在两点B,C,使得AB⊥BC,则点C的横坐标x2的取值范围是( )| A. | (-∞,0]∪[4,+∞) | B. | (-∞,-1]∪[2,+∞) | C. | [-1,2] | D. | (-∞,0]∪[1,+∞) |
分析 设 B(x1,x12-4),C(x2,x22-4)根据AB⊥BC,表示出两直线的斜率相乘得-1,进而可得关于x2的一元二次方程,根据判别式大于等于0求得x2范围.
解答 解:由于B、C在抛物线上,故可设 B(x1.x12-4),C(x2.x22-4)
∵AB⊥BC,
∴x1≠2,x2≠2,x1≠x2
∴$\frac{{x}_{1}^{2}-4}{{x}_{1}-2}•\frac{{(x}_{1}^{2}-4)-({x}_{2}^{2}-4)}{{x}_{1}-{x}_{2}}$=-1,
即(x1+2)(x1+x2)=-1.
即x12+(x2+2)x1+(2x2+1)=0
∵x1∈R,
∴△=(x2+2)2-4(2x2+1)≥0,
即x22-4x2≥0.
解得x2≤0,x2≥4
解得:x2≤0或x2≥4.
故选:A
点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.
练习册系列答案
相关题目
14.已知x,y的取值如下表所示:
如果y与x呈线性相关,且线性回归方程为:$\widehat{y}$=$\widehat{b}$x+$\frac{7}{2}$,则$\widehat{b}$=( )
| x | 2 | 3 | 4 |
| y | 5 | 4 | 6 |
| A. | -$\frac{1}{10}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{10}$ | D. | $\frac{1}{2}$ |
11.-2log510-log50.25+2=( )
| A. | 0 | B. | -1 | C. | -2 | D. | -4 |
18.已知数列{an}的前n项和Sn=$\frac{n+1}{n+2}$,则a4=( )
| A. | $\frac{1}{20}$ | B. | $\frac{1}{30}$ | C. | 1 | D. | $\frac{7}{30}$ |