ÌâÄ¿ÄÚÈÝ
9£®mȡʲôֵʱ£¬·½³Ì×é$\left\{\begin{array}{l}{2{x}^{2}+2m{y}^{2}=2-m}\\{x-y+1=0}\end{array}\right.$ÓÐÁ½¸öÏàµÈµÄʵÊý½â£¿²¢Çó³öÕâʱ·½³Ì×éµÄ½â£®·ÖÎö ÓÉ·½³Ì×éÏûÈ¥y¿ÉµÃ£¨2+2m£©x2+4mx+3m-2=0£¬ÓÉ·½³Ì×éÓÐÁ½¸öÏàµÈµÄʵÊý½â£¬¿ÉµÃÅбðʽ¡÷=0£¬½â·½³Ì¼´¿ÉµÃµ½mµÄÖµ¼°·½³Ì×éµÄ½â£®
½â´ð ½â£ºÓÉ·½³Ì×é$\left\{\begin{array}{l}{2{x}^{2}+2m{y}^{2}=2-m}\\{x-y+1=0}\end{array}\right.$ÏûÈ¥y¿ÉµÃ
2x2+2m£¨x+1£©2-2+m=0£¬
¼´Îª£¨2+2m£©x2+4mx+3m-2=0£¬
ÓÉ·½³Ì×éÓÐÁ½¸öÏàµÈµÄʵÊý½â£¬¿ÉµÃ
Åбðʽ¡÷=£¨4m£©2-4£¨2+2m£©£¨3m-2£©=0£¬
½âµÃm=1»ò-2£¬
µ±m=1ʱ£¬4x2+4x+1=0£¬½âµÃx=-$\frac{1}{2}$£¬y=$\frac{1}{2}$£»
µ±m=-2ʱ£¬x2+4x+4=0£¬½âµÃx=-2£¬y=-1£®
Ôòm=1ʱ£¬·½³Ì×éµÄ½âΪ$\left\{\begin{array}{l}{x=-\frac{1}{2}}\\{y=\frac{1}{2}}\end{array}\right.$£»
m=-2ʱ£¬·½³Ì×éµÄ½âΪ$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$£®
µãÆÀ ±¾Ì⿼²éת»¯Ë¼ÏëµÄÔËÓ㬿¼²é¶þ´Î·½³ÌÓÐÏàµÈʵÊý½âµÄÌõ¼þ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®ÊýÁÐ{an}µÄͨÏʽan=-58+16n-n2£¬Ôò£¨¡¡¡¡£©
| A£® | {an}ÊǵÝÔöÊýÁÐ | B£® | {an}ÊǵݼõÊýÁÐ | ||
| C£® | {an}ÏÈÔöºó¼õ£¬ÓÐ×î´óÖµ | D£® | {an}ÏȼõºóÔö£¬ÓÐ×îСֵ |
9£®Èôº¯Êýy=$\frac{x-p}{x+1}$ÔÚ£¨-1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ÔòpµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | p£¼-1 | B£® | p£¼1 | C£® | p£¾-1 | D£® | p£¾1 |