题目内容
15.已知{an},{bn}是满足(1+$\sqrt{2}$)n=an+bn$\sqrt{2}$的两个无穷数列,推测an ,bn表示(1-$\sqrt{2}$)n的表达式,并加以证明.分析 利用二项式定理与数学归纳法即可证明.
解答 解:∵(1+$\sqrt{2}$)n=an+bn$\sqrt{2}$,
∴当n=1时,a1=1,b1=1.∴$1-\sqrt{2}$=a1-b1$\sqrt{2}$.
当n=2时,$(1+\sqrt{2})^{2}$=3+2$\sqrt{2}$,可得a2=3,b2=2;∴$(1-\sqrt{2})^{2}$=3-2$\sqrt{2}$=a2-b2$\sqrt{2}$.
推测an ,bn表示(1-$\sqrt{2}$)n=an-bn$\sqrt{2}$.
下面给出证明:由(1+$\sqrt{2}$)n=an+bn$\sqrt{2}$,可得$(1+\sqrt{2})^{n+1}$=$({a}_{n}+{b}_{n}\sqrt{2})$$(1+\sqrt{2})$=(an+2bn)+(an+bn)$\sqrt{2}$,
∴an+1=(an+2bn),bn+1=(an+bn).
(1)当n=1时,$1-\sqrt{2}$=a1-b1$\sqrt{2}$成立;
(2)假设当n=k(k∈N*)时,$(1-\sqrt{2})^{k}$=ak-bk$\sqrt{2}$.
则当n=k+1时,$(1-\sqrt{2})^{k+1}$=(ak-bk$\sqrt{2}$)$(1-\sqrt{2})$=(ak+2bk)-(ak+bk)$\sqrt{2}$=ak+1-bk+1$\sqrt{2}$.
因此当n=k+1时,命题成立.
综上可得:?n∈N*,(1-$\sqrt{2}$)n=an-bn$\sqrt{2}$.
点评 本题考查了二项式定理与数学归纳法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目