题目内容
17.将函数f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)的图象向右平移$\frac{π}{4ω}$个单位,得到函数y=g(x)的图象,若y=g(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上为增函数,则ω的最大值为( )| A. | 3 | B. | 2 | C. | $\frac{3}{2}$ | D. | $\frac{5}{4}$ |
分析 根据平移变换的规律求解g(x),结合三角函数g(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上为增函数建立不等式即可求解ω的最大值
解答 解:函数f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)的图象向右平移$\frac{π}{4ω}$个单位,
可得g(x)=2sin[ω(x-$\frac{π}{4ω}$)+$\frac{π}{4}$]=2sin(ωx)在[-$\frac{π}{6}$,$\frac{π}{3}$]上为增函数,
∴$-\frac{π}{2}+2kπ≤-\frac{πω}{6}$且$\frac{πω}{3}≤\frac{π}{2}+2kπ$,(k∈Z)
解得:ω≤3-12k且$ω≤\frac{3}{2}+6k$,(k∈Z)
∵ω>0,
∴当k=0时,ω取得最大值为$\frac{3}{2}$.
故选:C.
点评 本题主要考查三角函数的图象和性质,根据平移变换规律求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.
练习册系列答案
相关题目
7.已知变量x,y满足$\left\{\begin{array}{l}{x^2}-{y^2}≥0\\-k≤x≤k\end{array}\right.$,且目标函数z=x+2y的最小值为-2,则k的值为( )
| A. | $-\frac{2}{3}$ | B. | $\frac{2}{3}$ | C. | -2 | D. | 2 |
8.某环保部门对A,B,C三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如表所示:
已知在这180个数据中随机抽取一个,恰好抽到记录B城市空气质量为优的数据的概率为0.2.
(1)现用分层抽样的方法,从上述180个数据汇总抽取30个进行后续分析,求在C城中应抽取的数据的个数;
(2)已知y≥23,z≥24,求在C城中空气质量为优的天数大于空气质量为良的天数的概率.
| A城 | B城 | C城 | |
| 优(个) | 28 | x | y |
| 良(个) | 32 | 30 | z |
(1)现用分层抽样的方法,从上述180个数据汇总抽取30个进行后续分析,求在C城中应抽取的数据的个数;
(2)已知y≥23,z≥24,求在C城中空气质量为优的天数大于空气质量为良的天数的概率.
12.已知i是虚数单位,复数i•z=1-2i,则复数z在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
9.已知集合A={x|x(x-3)<0},B={-1,0,1,2,3},则A∩B=( )
| A. | {-1} | B. | {1,2} | C. | {0,3} | D. | {-1,1,2,3} |
13.已知sin(540°+α)=-$\frac{4}{5}$,则cos(α-270°)=( )
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $-\frac{3}{5}$ |