ÌâÄ¿ÄÚÈÝ
8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{\sqrt{2}}{2}t}\\{y=2-\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔµãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖᣬȡÏàͬµÄµ¥Î»³¤¶È½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{3}$cos¦È£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÇúÏßCÓëÖ±Ïßl½»ÓÚA£¬BÁ½µã£¬Çó|AB|µÄ³¤£®
·ÖÎö £¨1£©°Ñ¦Ñ=2$\sqrt{3}$cos¦È»¯Îª${¦Ñ}^{2}=2\sqrt{3}¦Ñcos¦È$£¬¿ÉµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©°ÑÖ±ÏߵIJÎÊý·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬ÓÉ£¨1£©Çó³öÔ²ÐÄ×ø±êºÍ°ë¾¶£¬Óɵ㵽ֱÏߵľàÀ빫ʽÇó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬´úÈëÏÒ³¤¹«Ê½Çó³ö|AB|£®
½â´ð ½â£º£¨1£©ÓɦÑ=2$\sqrt{3}$cos¦ÈµÃ${¦Ñ}^{2}=2\sqrt{3}¦Ñcos¦È$£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÊÇ£º${x^2}+{y^2}-2\sqrt{3}x=0$£»¡£¨5·Ö£©
£¨2£©ÓÉ$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{\sqrt{2}}{2}t}\\{y=2-\frac{\sqrt{2}}{2}t}\end{array}\right.$µÃ£¬x+y-2-$\sqrt{3}$=0£¬
ÓÉ£¨1£©µÃÔ²µÄ·½³ÌÊÇ${x^2}+{y^2}-2\sqrt{3}x=0$£¬
ÔòÔ²ÐÄ×ø±êÊÇ£¨$\sqrt{3}$£¬0£©¡¢°ë¾¶r=$\sqrt{3}$£¬
¡àÔ²ÐÄ£¨$\sqrt{3}$£¬0£©µ½Ö±Ïßx+y-2-$\sqrt{3}$=0µÄ¾àÀëd=$\frac{|\sqrt{3}-0-2-\sqrt{3}|}{\sqrt{2}}$=$\sqrt{2}$£¬
¡à|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$=2£®¡£¨10·Ö£©
µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬ÒÔ¼°Ö±ÏßÓëÔ²ÏཻʱµÄÏÒ³¤¹«Ê½£¬ÊôÓÚÖеµÌ⣮
| A£® | µÚÒ»¡¢¶þ¡¢ÈýÏóÏÞ | B£® | µÚÒ»¡¢¶þ¡¢ËÄÏóÏÞ | C£® | µÚÒ»¡¢Èý¡¢ËÄÏóÏÞ | D£® | µÚ¶þ¡¢Èý¡¢ËÄÏóÏÞ |
| A£® | 31 | B£® | $\frac{31+36}{2}=33.5$ | C£® | 36 | D£® | 37 |
| A£® | $\frac{5}{6}$ | B£® | 6 | C£® | $\frac{1}{6}$ | D£® | 5 |
| A£® | $\frac{1}{3}$ | B£® | $\frac{2}{3}$ | C£® | 1 | D£® | -$\frac{5}{3}$ |
| A£® | £¨-$\frac{3}{5}$£¬$\frac{1}{5}$£© | B£® | £¨-$\frac{2}{5}$£¬$\frac{1}{5}$£© | C£® | £¨-$\frac{3}{5}$£¬-$\frac{2}{5}$£© | D£® | £¨-$\frac{1}{5}$£¬$\frac{1}{5}$£© |