ÌâÄ¿ÄÚÈÝ

8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{\sqrt{2}}{2}t}\\{y=2-\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖᣬȡÏàͬµÄµ¥Î»³¤¶È½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{3}$cos¦È
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÇúÏßCÓëÖ±Ïßl½»ÓÚA£¬BÁ½µã£¬Çó|AB|µÄ³¤£®

·ÖÎö £¨1£©°Ñ¦Ñ=2$\sqrt{3}$cos¦È»¯Îª${¦Ñ}^{2}=2\sqrt{3}¦Ñcos¦È$£¬¿ÉµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©°ÑÖ±ÏߵIJÎÊý·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬ÓÉ£¨1£©Çó³öÔ²ÐÄ×ø±êºÍ°ë¾¶£¬Óɵ㵽ֱÏߵľàÀ빫ʽÇó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬´úÈëÏÒ³¤¹«Ê½Çó³ö|AB|£®

½â´ð ½â£º£¨1£©ÓɦÑ=2$\sqrt{3}$cos¦ÈµÃ${¦Ñ}^{2}=2\sqrt{3}¦Ñcos¦È$£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÊÇ£º${x^2}+{y^2}-2\sqrt{3}x=0$£»¡­£¨5·Ö£©
£¨2£©ÓÉ$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{\sqrt{2}}{2}t}\\{y=2-\frac{\sqrt{2}}{2}t}\end{array}\right.$µÃ£¬x+y-2-$\sqrt{3}$=0£¬
ÓÉ£¨1£©µÃÔ²µÄ·½³ÌÊÇ${x^2}+{y^2}-2\sqrt{3}x=0$£¬
ÔòÔ²ÐÄ×ø±êÊÇ£¨$\sqrt{3}$£¬0£©¡¢°ë¾¶r=$\sqrt{3}$£¬
¡àÔ²ÐÄ£¨$\sqrt{3}$£¬0£©µ½Ö±Ïßx+y-2-$\sqrt{3}$=0µÄ¾àÀëd=$\frac{|\sqrt{3}-0-2-\sqrt{3}|}{\sqrt{2}}$=$\sqrt{2}$£¬
¡à|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$=2£®¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬ÒÔ¼°Ö±ÏßÓëÔ²ÏཻʱµÄÏÒ³¤¹«Ê½£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø