题目内容
(2013•浙江模拟)数列{an}的前n项和Sn=
,若a1=
,a2=
.
(1)求数列{an}的前n项和Sn;
(2)求数列{an}的通项公式;
(3)设bn=
,求数列{bn}的前n项和Tn.
| n2 |
| an+b |
| 1 |
| 2 |
| 5 |
| 6 |
(1)求数列{an}的前n项和Sn;
(2)求数列{an}的通项公式;
(3)设bn=
| an |
| n2+n-1 |
分析:(1)利用数列{an}的前n项和Sn=
,a1=
,a2=
,建立方程,求出a,b的值,即可求数列{an}的前n项和Sn;
(2)利用Sn=
,再写一式,两式相减,即可求数列{an}的通项公式;
(3)求得数列{bn}的通项,利用裂项法即可求数列{bn}的前n项和Tn.
| n2 |
| an+b |
| 1 |
| 2 |
| 5 |
| 6 |
(2)利用Sn=
| n2 |
| an+b |
(3)求得数列{bn}的通项,利用裂项法即可求数列{bn}的前n项和Tn.
解答:解:(1)由S1=a1=
,得
=
,由S2=a1+a2=
,得
=
.
∴
,解得
,故Sn=
; …(4分)
(2)当n≥2时,an=Sn-Sn-1=
-
=
=
.…(7分)
由于a1=
也适合an=
. …(8分)
∴an=
; …(9分)
(3)bn=
=
=
-
. …(10分)
∴数列{bn}的前n项和Tn=b1+b2+…+bn-1+bn=1-
+
-
+…+
-
+
-
=1-
=
. …(14分)
| 1 |
| 2 |
| 1 |
| a+b |
| 1 |
| 2 |
| 4 |
| 3 |
| 4 |
| 2a+b |
| 4 |
| 3 |
∴
|
|
| n2 |
| n+1 |
(2)当n≥2时,an=Sn-Sn-1=
| n2 |
| n+1 |
| ( n-1 )2 |
| n |
| n3-( n-1 )2(n+1) |
| n(n+1) |
| n2+n-1 |
| n2+n |
由于a1=
| 1 |
| 2 |
| n2+n-1 |
| n2+n |
∴an=
| n2+n-1 |
| n2+n |
(3)bn=
| an |
| n2+n-1 |
| 1 |
| n( n+1 ) |
| 1 |
| n |
| 1 |
| n+1 |
∴数列{bn}的前n项和Tn=b1+b2+…+bn-1+bn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
点评:本题考查数列的通项与求和,考查裂项法的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目