题目内容

(2012•珠海一模)已知函数g(x)=x2+2x,数列{an}满足a1=
1
2
,2an+1=g(an);数列{bn}的前n项和为Tn,数列{bn}的前n项积为Rnbn=
1
2+an
(n∈N+).
(1)求证:2n+1Rn+Tn=2
(2)求证:5n-4n
5nTn
2
5n
分析:(1)先确定数列{bn}的通项,利用裂项法求和,利用叠乘法求积,即可证得结论;
(2)要证明5n-4n
5nTn
2
5n
成立,只须证明2[1-(
4
5
)n]≤Tn<2
成立.证明{an}是递增的正项数列,{bn}是递减的正项数列,即可证得结论.
解答:证明:(1)∵g(x)=x2+2x,∴2an+1=g(an)=
a
2
n
+2an

1
2+an
=
1
2
an
an+1
=bn

bn=
1
2
an
an+1
=
1
2
a
2
n
anan+1
=
1
2
2(an+1-an)
anan+1
=
1
an
-
1
an+1

∴Tn=b1+b2+b3+…+bn=(
1
a1
-
1
a2
)+(
1
a2
-
1
a3
)+(
1
a3
-
1
a4
)+…+(
1
an
-
1
an+1
)
=2-
1
an+1

Rn=b1b2b3bn=
1
2n
a1
a2
a2
a3
a3
a4
an
an+1
=
1
2n
a1
an+1
=
1
2n+1an+1

∴2n+1Rn+Tn=2n+1
1
2n+1an+1
+2-
1
an+1
=2
(2)要证明5n-4n
5nTn
2
5n
成立,只须证明2[1-(
4
5
)n]≤Tn<2
成立
a1=
1
2
>0
an+1=
1
2
(
a
2
n
+2an)
知,若an>0,则an+1>0
∴由(1)知Tn=2-
1
an+1
<2

an+1-an=
1
2
a
2
n
>0
,∴an+1>an>0,∴{an}是递增的正项数列
bn=
1
2+an
1
2+an+1
=bn+1>0
,∴{bn}是递减的正项数列
b1=
1
2+a1
=
2
5
,∴Rn=b1b2b3bn≤(
2
5
)n

∵2n+1Rn+Tn=2,∴Tn=2-2n+1Rn≥2(1-2nRn)≥2[1-(
4
5
)n]

2[1-(
4
5
)n]≤Tn<2

5n-4n
5nTn
2
5n
点评:本题考查数列递推式,考查裂项法与叠乘法的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网