题目内容
17.变换T1是绕原点逆时针旋转90°的变换,对应的变换矩阵为M1;变换T2是将点P(x,y)变为P1(2x+y,y),对应的变换矩阵为M2,求点(-1,2)先在变换T1作用下,再在变换T2的作用下点的坐标.分析 求得对应的变换矩阵为M1及M2,根据矩阵的乘法可得M2M1,即可求得点(-1,2)先在变换T1作用下,再在变换T2的作用下点的坐标.
解答 解:对应的变换矩阵为M1=$[\begin{array}{l}{cos90°}&{-sin90°}\\{sin90°}&{cos90°}\end{array}]$=$[\begin{array}{l}{0}&{-1}\\{1}&{0}\end{array}]$;--------------------------------------------------(3分)
设M2=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$,由M$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{2x+y}\\{y}\end{array}]$,则M2=$[\begin{array}{l}{2}&{1}\\{0}&{1}\end{array}]$;--------------------------------------------------(6分)
则M2M1=$[\begin{array}{l}{2}&{1}\\{0}&{1}\end{array}]$$[\begin{array}{l}{0}&{-1}\\{1}&{0}\end{array}]$=$[\begin{array}{l}{1}&{-2}\\{1}&{0}\end{array}]$,--------------------------------------------------(8分)
则M2M1$[\begin{array}{l}{-1}\\{2}\end{array}]$=$[\begin{array}{l}{1}&{-2}\\{1}&{0}\end{array}]$$[\begin{array}{l}{-1}\\{2}\end{array}]$=$[\begin{array}{l}{-5}\\{-1}\end{array}]$,
故所求点为(-5,-1).--------------------------------------------------(10分)
点评 本题考查矩阵的坐标变换,矩阵的乘法,考查计算能力,属于中档题.
| A. | -1 | B. | 1 | C. | -4 | D. | 4 |
| A. | $\frac{45}{4}$πcm2 | B. | 45πcm2 | C. | 54πcm2 | D. | 216πcm2 |