题目内容

10.若变量x,y满足不等式$\left\{\begin{array}{l}{x-2y+5≥0}\\{3-x≥0}\\{2x+y≥0}\end{array}\right.$,求目标函数z=$\frac{y+1}{x+1}$的最值.

分析 作出不等式组对应的平面区域,利用直线斜率的几何意义进行求解即可.

解答 解:作出不等式组对应的平面区域如图,
z=$\frac{y+1}{x+1}$的几何意义为区域内的点(x,y)到定点E(-1,-1)的斜率,
由图象知EA的斜率最小,无最大值.
由$\left\{\begin{array}{l}{x=3}\\{2x+y=0}\end{array}\right.$,即$\left\{\begin{array}{l}{x=3}\\{y=-6}\end{array}\right.$,即A(3,-6).
此时z=$\frac{-6+1}{3+1}$=$-\frac{5}{4}$,
即目标函数z=$\frac{y+1}{x+1}$的最小值为$-\frac{5}{4}$.

点评 本题主要考查线性规划的应用,利用数形结合以及直线的斜率公式是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网