题目内容
18.将函数f(x)=2sin(2x+$\frac{π}{3}$)图象向右平移φ个单位,得到图象关于原点对称,则φ的最小正值为$\frac{π}{6}$.分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的奇偶性,求得φ的最小正值.
解答 解:函数f(x)=2sin(2x+$\frac{π}{3}$)图象向右平移φ个单位,得到y=2sin[2(x-φ)+$\frac{π}{3}$]=2sin(2x+$\frac{π}{3}$-2φ)的图象,
再根据得到图象关于原点对称,则$\frac{π}{3}$-2φ=kπ,即 φ=$\frac{π}{6}$-$\frac{kπ}{2}$,k∈Z,
故φ的最小正值为$\frac{π}{6}$,
故答案为:$\frac{π}{6}$.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的奇偶性,属于基础题.
练习册系列答案
相关题目
8.
某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
(1)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;
(2)由(1)所做频率分布直方图,估测出这100名学生成绩的众数、中位数、平均数;
(3)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(1)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;
(2)由(1)所做频率分布直方图,估测出这100名学生成绩的众数、中位数、平均数;
(3)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
| 组号 | 分组 | 频数 | 频率 |
| 第1组 | [160,165) | 5 | 0.050 |
| 第2组 | [165,170) | ① | 0.350 |
| 第3组 | [170,175) | 30 | ② |
| 第4组 | [175,180) | 20 | 0.200 |
| 第5组 | [180,185] | 10 | 0.100 |
| 合计 | 100 | 1.00 | |
7.已知△ABC的内角A,B,C所对的边分别为a,b,c,若a=$\sqrt{2}$,b=2,sinB=$\sqrt{3}$(1-cosB),则sinA的值为$\frac{\sqrt{6}}{4}$.
8.函数y=$\frac{\sqrt{4-{x}^{2}}}{|x+5|-5}$是( )
| A. | 奇函数不是偶函数 | B. | 偶函数不是奇函数 | ||
| C. | 既是奇函数又是偶函数 | D. | 非奇非偶函数 |