题目内容
已知指数函数
满足:
,定义域为
的函数
是奇函数.求:
(1)确定
的解析式;
(2)求
,
的值;
(3)若对任意的
,不等式
恒成立,求实数
的取值范围.
解:(1)可设
,又
,得
,所以![]()
(2)
是奇函数,所以
,得
,
又由
,得![]()
(3)由(2)知
,易知
在
上为减函数。
又因
是奇函数,从而不等式:
等价于
,
因
为减函数,由上式推得:
即对一切
有:
,
从而判别式![]()
练习册系列答案
相关题目
题目内容
已知指数函数
满足:
,定义域为
的函数
是奇函数.求:
(1)确定
的解析式;
(2)求
,
的值;
(3)若对任意的
,不等式
恒成立,求实数
的取值范围.
解:(1)可设
,又
,得
,所以![]()
(2)
是奇函数,所以
,得
,
又由
,得![]()
(3)由(2)知
,易知
在
上为减函数。
又因
是奇函数,从而不等式:
等价于
,
因
为减函数,由上式推得:
即对一切
有:
,
从而判别式![]()