题目内容

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
5
4
,抛物线y2=20x的准线过双曲线的左焦点,则此双曲线的方程为(  )
A.
x2
4
-
y2
3
=1
B.
x2
3
-
y2
4
=1
C.
x2
16
-
y2
9
=1
D.
x2
9
-
y2
16
=1
∵双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率为
5
4

c
a
=
5
4
即c=
5
4
a
∵抛物线y2=20x的准线:x=-5过双曲线的左焦点(-c,0),
∴c=5,
∴a=4
而c2=a2+b2=16+b2=25,
∴b2=9,
∴双曲线的方程是
x2
16
-
y2
9
=1

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网