题目内容

4.将函数y=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的图象向右平移$\frac{π}{6}$个单位后,得到函数y=cos($\frac{π}{2}$-2x)的图象,则函数y=sin(ωx+φ)的对称中心为(  )
A.(-$\frac{5π}{6}$,0)B.($\frac{π}{3}$,0)C.($\frac{π}{6}$,0)D.(-$\frac{π}{3}$,0)

分析 由题意得y=sin(ωx-$\frac{πω}{6}$+φ)=cos($\frac{π}{2}$-2x)=sin2x,可解得函数的解析式为y=sin(2x+$\frac{π}{3}$),从而可求其对称中心.

解答 解:由题意得y=sin(ωx+φ)(ω>0)的图象向右平移$\frac{π}{6}$个单位后,
得到函数y=sin(ωx-$\frac{πω}{6}$+φ)=cos($\frac{π}{2}$-2x)=sin2x,
故可解得:ω=2,φ=$\frac{π}{3}$,
故函数y=sin(ωx+φ)的解析式为y=sin(2x+$\frac{π}{3}$),
由2x+$\frac{π}{3}$=kπ,即x=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,
k=1时,即解得函数的对称中心为($\frac{π}{3}$,0),
故选:B.

点评 本题主要考查了余弦函数的对称性,考查了函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网