题目内容
已知△ABC的三个内角A,B,C满足cosA(sinB+cosB)+cosC=0,则A=______.
cosA(sinB+cosB)+cosC=cosA(sinB+cosB)-cos(A+B)=0,
整理得:cosAsinB+cosAcosB-cosAcosB+sinAsinB=cosAsinB+sinAsinB=sinB(sinA+cosA)=0,
∵sinB≠0,∴sinA+cosA=
sin(A+
)=0,
∴A+
=π,
则A=
.
故答案为:
整理得:cosAsinB+cosAcosB-cosAcosB+sinAsinB=cosAsinB+sinAsinB=sinB(sinA+cosA)=0,
∵sinB≠0,∴sinA+cosA=
| 2 |
| π |
| 4 |
∴A+
| π |
| 4 |
则A=
| 3π |
| 4 |
故答案为:
| 3π |
| 4 |
练习册系列答案
相关题目