题目内容

1.计算下列各式的值.
(1)$\frac{lg2+lg5-lg8}{lg50-lg40}$;
(2)log535-2log5$\frac{7}{3}$+log57-log51.8;
(3)$\frac{lg\sqrt{27}+lg8-lg\sqrt{1000}}{lg1.2}$;
(4)2(lg$\sqrt{2}$)2+lg$\sqrt{2}$•lg5+$\sqrt{(lg\sqrt{2})^{2}-lg2+1}$.

分析 利用对数的性质和运算法则求解.

解答 解:(1)$\frac{lg2+lg5-lg8}{lg50-lg40}$
=$\frac{lg\frac{2×5}{8}}{lg\frac{50}{40}}$
=$\frac{lg\frac{5}{4}}{lg\frac{5}{4}}$=1.
(2)log535-2log5$\frac{7}{3}$+log57-log51.8
=$lo{g}_{5}(35×\frac{9}{49}×7×\frac{5}{9})$
=log525
=2.
(3)$\frac{lg\sqrt{27}+lg8-lg\sqrt{1000}}{lg1.2}$
=$\frac{\frac{3}{2}lg3+3lg2-\frac{3}{2}}{lg1.2}$
=$\frac{\frac{3}{2}(lg3+lg4-lg10)}{lg1.2}$
=$\frac{\frac{3}{2}lg1.2}{lg1.2}$
=$\frac{3}{2}$.
(4)2(lg$\sqrt{2}$)2+lg$\sqrt{2}$•lg5+$\sqrt{(lg\sqrt{2})^{2}-lg2+1}$
=lg$\sqrt{2}$(2lg$\sqrt{2}$+lg5)+1-lg$\sqrt{2}$
=lg$\sqrt{2}$(lg2+lg5)+1-lg$\sqrt{2}$
=lg$\sqrt{2}$+1-lg$\sqrt{2}$
=1.

点评 本题考查对数式的化简求值,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网