ÌâÄ¿ÄÚÈÝ
19£®ÒÑÖªÅ×ÎïÏßC1£ºy2=2px£¨p£¾0£©ÓëÅ×ÎïÏßC2¹ØÓÚyÖá¶Ô³Æ£¬F1¡¢F2·Ö±ðΪC1¡¢C2µÄ½¹µã£¬PÊÇC1ÉÏÒ»µã£¬µ±PÔÚxÖáÉÏ·½ÇÒÖ±ÏßPF1µÄбÂÊΪ$\sqrt{3}$ʱ£¬|PF2|=$\frac{\sqrt{7}}{2}$£®£¨1£©ÇóÅ×ÎïÏßC1ºÍC2µÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl£ºy=x-1£¬ÊÇ·ñ´æÔÚµãM£¨x0£¬y0£©£¨|y0|¡Ü1£©£¬Ê¹µÃµãM¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãM¡äÔÚC2ÉÏ£¿Èô´æÔÚ£¬Çó³öMµãµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÉèµãQÔÚC2ÉÏ£¬P¡¢QÔÚxÖáͬ²àÇÒPF1¡ÎQF2£¬QF1ÓëPF2½»ÓÚµãM£¬¹ýM×÷PF1µÄƽÐÐÏß½»xÖáÓÚµãK£¬Ö¤Ã÷£º|MK|ÊǶ¨Öµ£®
·ÖÎö £¨1£©ÓÉÒÑÖªÖе±PÔÚxÖáÉÏ·½ÇÒÖ±ÏßPF1µÄбÂÊΪ$\sqrt{3}$ʱ£¬|PF2|=$\frac{\sqrt{7}}{2}$£¬ÀûÓÃÁ½µãÖ®¼ä¾àÀ빫ʽ£¬Çó³öpÖµ£¬¿ÉµÃC1ºÍC2µÄ·½³Ì£»
£¨2£©¸ù¾Ý¶Ô³ÆµãÁ¬ÏߵĴ¹Ö±Æ½·½ÏßÊǶԳÆÖᣬ½áºÏµãM¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãM¡äÔÚC2ÉÏ£¬¿ÉµÃMµãµÄ×ø±ê£»
£¨3£©ÓÉÒÑÖªÇó³öP£¬QµÄ×ø±ê£¬½ø¶øÇó³öM£¬KµÄ×ø±ê£¬´úÈëÁ½µãÖ®¼ä¾àÀ빫ʽ£¬¿ÉµÃ½áÂÛ£®
½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßC1£ºy2=2px£¨p£¾0£©ÓëÅ×ÎïÏßC2¹ØÓÚyÖá¶Ô³Æ£¬F1¡¢F2·Ö±ðΪC1¡¢C2µÄ½¹µã£¬
¡àF1¡¢F2µÄ×ø±ê·Ö±ðΪ£¨$\frac{p}{2}$£¬0£©£¬£¨-$\frac{p}{2}$£¬0£©£¬
Ôòµ±PÔÚxÖáÉÏ·½ÇÒÖ±ÏßPF1µÄбÂÊΪ$\sqrt{3}$ʱ£¬
Ö±ÏßPF1µÄ·½³ÌΪ£ºy=$\sqrt{3}$£¨x-$\frac{p}{2}$£©£¬
´úÈëy2=2px²¢ÕûÀíµÃ£º${y}^{2}-\frac{2\sqrt{3}p}{3}{y-p}^{2}=0$£¬
½âµÃ£ºy=$\sqrt{3}$p£¬Ôòx=$\frac{3}{2}p$£¬
ÓÖÓÉ|PF2|=$\sqrt{£¨\frac{3}{2}p+\frac{1}{2}p£©^{2}+£¨\sqrt{3}p£©^{2}}$=$\sqrt{7}$p=$\frac{\sqrt{7}}{2}$£®
½âµÃ£ºp=$\frac{1}{2}$£¬
ÔòÅ×ÎïÏßC1ºÍC2µÄ·½³Ì·Ö±ðΪ£ºy2=xºÍy2=-x£¬
£¨2£©Éè´æÔÚM£¨x0£¬y0£©£¨|y0|¡Ü1£©£¬Ê¹µÃµãP¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãM¡ä£¨x1£¬y1£©ÔÚC2ÉÏ£¬
Ôò$\left\{\begin{array}{l}\frac{{y}_{1}-{y}_{0}}{{x}_{1}-{x}_{0}}=-1\\ \frac{{y}_{1}+{y}_{0}}{2}=\frac{{x}_{1}+{x}_{0}}{2}-1\end{array}\right.$£¬
¼´$\left\{\begin{array}{l}{x}_{1}={y}_{0}+1\\{y}_{1}={x}_{0}-1\end{array}\right.$£¬
´úÈëy2=-xµÃ£º$£¨{x}_{0}-1£©^{2}=-£¨{y}_{0}+1£©$£¬
¼´${{y}_{0}=-£¨{x}_{0}-1£©}^{2}-1$¡Ü-1£¬
ÓÖÓÉ|y0|¡Ü1µÃ£º-1¡Üy0¡Ü1£¬
Ôòy0=-1£¬
Ôòx1=0£¬y1=0£¬x0=1£¬
¼´Mµã×ø±êΪ£¨1£¬-1£©£¬
Ö¤Ã÷£º£¨3£©ÓÉ£¨1£©µÃPµã×ø±êΪ£¨$\frac{3}{4}$£¬$\frac{\sqrt{3}}{2}$£©£¬F1¡¢F2µÄ×ø±ê·Ö±ðΪ£¨$\frac{1}{4}$£¬0£©£¬£¨-$\frac{1}{4}$£¬0£©£¬
¡ßPF1¡ÎQF2£¬
¡àÖ±ÏßQF2µÄ·½³ÌΪ£ºy=$\sqrt{3}$£¨x+$\frac{1}{4}$£©£¬
´úÈëy2=-xµÃ£º$3{x}^{2}+\frac{5}{2}x+\frac{3}{16}=0$£¬
¡ßP¡¢QÔÚxÖáͬ²à£¬¹ÊQµã×ø±êΪ£¨$-\frac{1}{12}$£¬$\frac{\sqrt{3}}{6}$£©£¬
ÔòÖ±ÏßQF1µÄ·½³ÌΪ£ºy=$-\frac{\sqrt{3}}{2}$£¨x-$\frac{1}{4}$£©£¬
PF2µÄ·½³ÌΪ£ºy=$\frac{\sqrt{3}}{2}$£¨x+$\frac{1}{4}$£©£¬
ÁªÁ¢Á½¸öÖ±Ïߵķ½³Ì£¬¿ÉµÃ½»µãMµÄ×ø±êΪ£¨0£¬$\frac{\sqrt{3}}{8}$£©£¬
¹ýM×÷PF1µÄƽÐÐÏß·½³ÌΪ£ºy=$\sqrt{3}$x+$\frac{\sqrt{3}}{8}$£¬
ÔòµãKµÄ×ø±êΪ£º£¨-$\frac{1}{8}$£¬0£©£¬
Ôò|MK|=$\frac{1}{4}$£¬
¼´|MK|ÊǶ¨Öµ
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÅ×ÎïÏߵķ½³Ì£¬Å×ÎïÏßµÄÐÔÖÊ£¬Á½µãÖ®¼ä¾àÀë·½³Ì£¬µã¹ØÓÚÖ±ÏߵĶԳƵ㣬ֱÏߵĽ»µã£¬Á½µãÖ®¼ä¾àÀ빫ʽ£¬ÊǽâÎö¼¸ºÎ֪ʶµÄ×ÛºÏÓ¦Óã¬ÄѶÈÖеµ£®