题目内容
【题目】如图,四棱锥P-ABCD的底面是矩形,侧面PAD为等边三角形,AB=
,AD=
, PB=
.
(1)求证:平面PAD⊥平面ABCD;
(2)M是棱PD上一点,三棱锥M-ABC的体积为1.记三棱锥P-MAC的体积为
,三棱锥M-ACD的体积为
,求
.
![]()
【答案】(1)详见解析;(2)
.
【解析】
(1)由勾股定理可得
,又
,可得
平面
,可得平面
平面
;
(2)由三棱锥
与三棱锥
等底同高,可得
,又由正三角形
的高也就是三棱锥
的高,计算出三棱锥
的体积,从而得出
,再得出
的值.
(1)由已知,得
,于是
,故
,
因为四边形ABCD是矩形,所以
,又
,所以
平面
,因为
平面
,
所以:平面
平面
.
(2)依题意,得三棱锥
与三棱锥
等底同高,所以
,
又正三角形
中,
,所以正三角形
的高为
,
由(1)得正三角形
的高也就是三棱锥
的高,
所以
,
所以
,故
.
故得解.
练习册系列答案
相关题目
【题目】世界那么大,我想去看看,处在具有时尚文化代表的大学生们旅游动机强烈,旅游可支配收入日益增多,可见大学生旅游是一个巨大的市场.为了解大学生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某大学的
名学生进行问卷调查,并把所得数据列成如下所示的频数分布表:
组别 |
|
|
|
|
|
频数 |
|
|
|
|
|
(Ⅰ)求所得样本的中位数(精确到百元);
(Ⅱ)根据样本数据,可近似地认为学生的旅游费用支出
服从正态分布
,若该所大学共有学生
人,试估计有多少位同学旅游费用支出在
元以上;
(Ⅲ)已知样本数据中旅游费用支出在
范围内的
名学生中有
名女生,
名男生,现想选其中
名学生回访,记选出的男生人数为
,求
的分布列与数学期望.
附:若
,则
,
,
.