题目内容
| AN |
| 1 |
| 2 |
| NC |
| AP |
| AB |
| 2 |
| 9 |
| AC |
分析:利用向量共线定理可设
=t
,又
=
-
,可得
=
+
=(1-t)
+
,再利用已知
=m
+
,根据向量相等即可得出.
| BP |
| BN |
| BN |
| AN |
| AB |
| AP |
| AB |
| BP |
| AB |
| t |
| 3 |
| AC |
| AP |
| AB |
| 2 |
| 9 |
| AC |
解答:解:如图所示,设
=t
,又
=
-
,
∴
=
+
=
+t(
-
)=(1-t)
+t
=(1-t)
+
=(1-t)
+t×
×
=(1-t)
+
,
∵
=m
+
,∴m
+
=(1-t)
+
,
∴
,解得m=
.
故选C.
| BP |
| BN |
| BN |
| AN |
| AB |
∴
| AP |
| AB |
| BP |
| AB |
| AN |
| AB |
| AB |
| AN |
| AB |
| t |
| 2 |
| NC |
| AB |
| 1 |
| 2 |
| 2 |
| 3 |
| AC |
| AB |
| t |
| 3 |
| AC |
∵
| AP |
| AB |
| 2 |
| 9 |
| AC |
| AB |
| 2 |
| 9 |
| AC |
| AB |
| t |
| 3 |
| AC |
∴
|
| 1 |
| 3 |
故选C.
点评:熟练掌握向量的共线定理、运算法则及向量相等是解题的关键.
练习册系列答案
相关题目