题目内容
在数列{an}中,a1=1,2an+1=(1+| 1 |
| n |
(Ⅰ)求{an}的通项公式;
(Ⅱ)令bn=an+1-
| 1 |
| 2 |
(Ⅲ)求数列{an}的前n项和Tn.
分析:(Ⅰ)由题设条件得
=
•
,由此可知an=
.
(Ⅱ)由题设条件知Sn=
+
++
,
Sn=
+
++
+
,再由错位相减得
Sn=
+2(
+
++
)-
,由此可知Sn=5-
.
(Ⅲ)由Sn=(a2+a3++an+1)-
(a1+a2++an)得Tn-a1+an+1-
Tn=Sn.由此可知Tn=2Sn+2a1-2an+1=12-
.
| an+1 |
| (n+1)2 |
| 1 |
| 2 |
| an |
| n2 |
| n2 |
| 2n-1 |
(Ⅱ)由题设条件知Sn=
| 3 |
| 2 |
| 5 |
| 22 |
| 2n+1 |
| 2n |
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-1 |
| 2n |
| 2n+1 |
| 2n+1 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 2n+1 |
| 2n+1 |
| 2n+5 |
| 2n |
(Ⅲ)由Sn=(a2+a3++an+1)-
| 1 |
| 2 |
| 1 |
| 2 |
| n2+4n+6 |
| 2n-1 |
解答:解:(Ⅰ)由条件得
=
•
,又n=1时,
=1,
故数列{
}构成首项为1,公式为
的等比数列.从而
=
,即an=
.
(Ⅱ)由bn=
-
=
得Sn=
+
+…+
,
Sn=
+
+…+
+
,
两式相减得:
Sn=
+2(
+
+…+
)-
,所以Sn=5-
.
(Ⅲ)由Sn=(a2+a3+…+an+1)-
(a1+a2+…+an)得Tn-a1+an+1-
Tn=Sn.
所以Tn=2Sn+2a1-2an+1=12-
.
| an+1 |
| (n+1)2 |
| 1 |
| 2 |
| an |
| n2 |
| an |
| n2 |
故数列{
| an |
| n2 |
| 1 |
| 2 |
| an |
| n2 |
| 1 |
| 2n-1 |
| n2 |
| 2n-1 |
(Ⅱ)由bn=
| (n+1)2 |
| 2n |
| n2 |
| 2n |
| 2n+1 |
| 2n |
| 3 |
| 2 |
| 5 |
| 22 |
| 2n+1 |
| 2n |
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-1 |
| 2n |
| 2n+1 |
| 2n+1 |
两式相减得:
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 2n+1 |
| 2n+1 |
| 2n+5 |
| 2n |
(Ⅲ)由Sn=(a2+a3+…+an+1)-
| 1 |
| 2 |
| 1 |
| 2 |
所以Tn=2Sn+2a1-2an+1=12-
| n2+4n+6 |
| 2n-1 |
点评:本题考查数列的综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目