题目内容

在数列{an}中,a3=1,Sn是其前n项和,且Sn=an+1(n∈N*).
(Ⅰ)求an,Sn
(Ⅱ)设bn=log2Sn,数列{cn}满足cn•bn+3•bn+4=1+n(n+1)(n+2)•2bn,数列{cn}的前n项和为Tn,当n>1时,求使
2
n-1
Tn<2n+
n+1
5
成立的最小正整数n的值.
考点:数列的求和,数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)当n=1时,a1=a2,当n=2时,a1+a2=a3=1,从而a1=a2=
1
2
,由
Sn=an+1
Sn-1=an,n≥2
,得2an=an+1,n≥2,从而数列{an}从第二项起是首项为
1
2
,公比为2的等比数列,由此能求出an,Sn
(Ⅱ)由Sn=2n-2,得bn=log2Sn=n-2,从而由cn•bn+3•bn+4=1+n(n+1)(n+2)•2bn,得到cn=
1
(n+1)(n+2)
+n•2n-2,由此利用分组求和法和裂项求和法求出Tn=
n+1
n+2
+(n-1)•2n-1
,由此能求出当n>1时,使
2
n-1
Tn2n+
n+1
5
成立的最小正整数n的值为n=4.
解答: 解:(Ⅰ)当n=1时,a1=a2
当n=2时,a1+a2=a3=1,
a1=a2=
1
2

Sn=an+1
Sn-1=an,n≥2
,得an=an+1-an,即2an=an+1,n≥2,
an+1
an
=2,n≥2,∵
a2
a1
=1

∴数列{an}从第二项起是首项为
1
2
,公比为2的等比数列,
∴an=
1
2
,n=1
2n-1,n≥2

Sn=an+1=2n-2

(Ⅱ)由Sn=2n-2,得bn=log2Sn=n-2,
∵cn•bn+3•bn+4=1+n(n+1)(n+2)•2bn=1+n(n+1)(n+2)•2n-2
cn=
1
(n+1)(n+2)
+n•2n-2
∴Tn=
1
2×3
+
1
3×4
+…+
1
(n+1)(n+2)
+1×2-1+2×20+3×2+…+n•2n-2
令A=
1
2×3
+
1
3×4
+…+
1
(n+1)(n+2)

=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2

=
1
2
-
1
n+2

令B=1×2-1+2×2+3×21+4×22+…+(n-1)•2n-1
2B=1×20+2×21+3×22+…+(n-1)•2n-2+n•2n-1
-B=2-1+20+2+22+…+2n-2-n•2n-1
B=(n-1)2n-1+
1
2

∴Tn=
1
2
-
1
n+2
+(n-1)•2n-1
+
1
2
=
n+1
n+2
+(n-1)•2n-1

当n>1时,
2
n-1
Tn
<2n+
n+1
5
,即2n+
2(n+1)
(n-1)(n+2)
2n+
n+1
5

∴n2+n-12>0,(n+4)(n-3)>0,n>3,
∴当n>1时,使
2
n-1
Tn2n+
n+1
5
成立的最小正整数n的值为n=4.
点评:本题考查数列的通项公式和前n项和公式的求法,考查不等式的求法,解题时要认真审题,注意分组求和法、裂项求和法、构造法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网