题目内容

19.函数f(x)是奇函数,且在(0,+∞)内是单调递增函数,若f(3)=0,则不等式xf(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(0,3)

分析 易判断f(x)在(-∞,0)上的单调性及f(x)图象所过特殊点,作出f(x)的草图,根据图象可解不等式.

解答 解:∵f(x)在R上是奇函数,且f(x)在(0,+∞)上是增函数,
∴f(x)在(-∞,0)上也是增函数,
由f(3)=0,得f(-3)=-f(3)=0,
即f(-3)=0,
作出f(x)的草图,如图所示:
由图象,得xf(x)<0?$\left\{\begin{array}{l}{x>0}\\{f(x)<0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)>0}\end{array}\right.$,
解得0<x<3或-3<x<0,
∴xf(x)<0的解集为:(-3,0)∪(0,3),
故选:D.

点评 本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网