题目内容

奇函数f(x)满足f(1-x)=f(1+x),则f(2008)


  1. A.
    1
  2. B.
    0
  3. C.
    -1
  4. D.
    不确定
B
分析:从要求的结论f(2008)不难知道:本题需要知道周期T,恰好题中给出了条件f(1-x)=f(1+x),因此可知函数的周期值,所以只需化简f(2008)到最简形式即可求解.
解答:由奇函数f(x)满足f(1-x)=f(1+x),可得 f(-x)=f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x)
根据周期定义可知,该函数的周期为4.
又f(x)是定义在R上的奇函数,所以f(0)=0,
所以,f(2008)=f(2004+4)=f(2002+2×4)=…=f(0+502×4)=f(0)=0
故选B
点评:本题是中档题.考查函数的周期性和奇偶性,是道综合题,其中探讨函数的周期性是难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网