题目内容

18.已知${log_{\frac{1}{2}}}$(x+y+4)<${log_{\frac{1}{2}}}$(3x+y-2),若x-y<λ+$\frac{9}{λ}$恒成立,则λ的取值范围是(  )
A.(-∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)

分析 根据已知得出x,y的约束条件$\left\{\begin{array}{l}{x+y+4>0}\\{3x+y-2>0}\\{x+y+4>3x+y-2}\end{array}\right.$,画出满足约束条件的可行域,再用角点法,求出目标函数z=x-y的最大值,再根据最值给出λ的求值范围.

解答 解:由题意得x,y的约束条件$\left\{\begin{array}{l}{x+y+4>0}\\{3x+y-2>0}\\{x+y+4>3x+y-2}\end{array}\right.$.
画出不等式组$\left\{\begin{array}{l}{x+y+4>0}\\{3x+y-2>0\\;}\\{x<3}\end{array}\right.$表示的可行域如下图示:
在可行域内平移直线z=x-y,
当直线经过3x+y-2=0与x=3的交点A(3,-7)时,
目标函数z=x-y有最大值z=3+7=10.
x-y<λ+$\frac{9}{λ}$恒成立,即:λ+$\frac{9}{λ}$≥10,
即:$\frac{{λ}^{2}-10λ+9}{λ}≥0$.
解得:λ∈(0,1]∪[9,+∞)
故选:D.

点评 用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网