题目内容
若log2(9x)+log2(x-
)=1,则
(1+x+x2+…xn)=______.
| 1 |
| 3 |
| lim |
| n→+∞ |
∵log2(9x)+log2(x-
)=1,
∴9x(x-
)=2,
解得x=-
(舍),或x=
.
∴
(1+x+x2+…xn)
=
=
=
=3.
故答案为3.
| 1 |
| 3 |
∴9x(x-
| 1 |
| 3 |
解得x=-
| 1 |
| 3 |
| 2 |
| 3 |
∴
| lim |
| n→+∞ |
=
| lim |
| n→+∞ |
| 1×(1-xn+1) |
| 1-x |
=
| lim |
| n→+∞ |
1-(
| ||
1-
|
=
| 1 | ||
|
=3.
故答案为3.
练习册系列答案
相关题目