题目内容
若log2(9x)+log2(x-
)=1,则
(1+x+x2+…xn)=
| 1 |
| 3 |
| lim |
| n→+∞ |
3
3
.分析:由log2(9x)+log2(x-
)=1,知9x(x-
)=2,解得x=-
(舍),或x=
.由
(1+x+x2+…xn)=
知,
(1+x+x2+…xn)=
,由此能求出其结果.
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| lim |
| n→+∞ |
| lim |
| n→+∞ |
| 1×(1-xn+1) |
| 1-x |
| lim |
| n→+∞ |
| lim |
| n→+∞ |
1-(
| ||
1-
|
解答:解:∵log2(9x)+log2(x-
)=1,
∴9x(x-
)=2,
解得x=-
(舍),或x=
.
∴
(1+x+x2+…xn)
=
=
=
=3.
故答案为3.
| 1 |
| 3 |
∴9x(x-
| 1 |
| 3 |
解得x=-
| 1 |
| 3 |
| 2 |
| 3 |
∴
| lim |
| n→+∞ |
=
| lim |
| n→+∞ |
| 1×(1-xn+1) |
| 1-x |
=
| lim |
| n→+∞ |
1-(
| ||
1-
|
=
| 1 | ||
|
=3.
故答案为3.
点评:本题考查数列的极限的运算,解题时要认真审题,仔细解答,注意对数函数的性质和等比数列的性质的灵活运用.
练习册系列答案
相关题目