题目内容
长方体的一个顶点上三条棱长分别是3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是 .
与双曲线有共同的渐近线,且经过点的双曲线的方程为( )
A. B. C. D.
(本小题满分10分)选修4—1:几何证明选讲
如图,AB是⊙O的直径,AC是⊙O的一条弦,∠BAC的平分线AD交⊙O于点D,DEAC,且DE交AC的延长线于点E,OE交AD于点F.
(Ⅰ)求证:DE是⊙O的切线;
(Ⅱ)若,求的值.
(本小题满分16分)已知直线与⊙相交于A,B两点,过点A,B的两条切线相交于点P.
(1)求点P的坐标;
(2)若N为线段AB上的任意一点(不包括端点),过点N的直线交⊙O于C,D两点,过点C、D的两条切线相交于点Q,判断点Q的轨迹是否经过定点?若过定点,求出该点的坐标;若不过定点,说明理由.
当时,不等式恒成立,则的取值范围是 .
一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出80人作进一步调查,则在[1 500,2 000)(元)月收入段应抽出 人.
关于的方程有实根,则的取值范围是 .
(本题14分)设抛物线过点(是大于零的常数).
(1)求抛物线的方程;
(2)若是抛物线的焦点,斜率为1的直线交抛物线A,B两点,轴负半轴上的点满足,直线相交于点, 当时,求直线的方程.
已知圆C:,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为( )
A、 B、 C、2 D、2