题目内容
【题目】如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-
(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.
![]()
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.
【答案】见解析
【解析】
解 (1)令y=0,得
kx-
(1+k2)x2=0,
由实际意义和题设条件知x>0,k>0,
故x=
=
≤
=10,
当且仅当k=1时取等号.
所以炮的最大射程为10千米.
(2)因为a>0,所以炮弹可击中目标 存在k>0,
![]()
使3.2=ka-
(1+k2)a2成立 关于k的方程a2k2-20ak+a2+64=0有正根
判别式Δ=(-20a)2-4a2(a2+64)≥0 a≤6.
所以当a不超过6千米时,可击中目标.
【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在
内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图.
(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面
列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?
甲生产线 | 乙生产线 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
附:
(其中
为样本容量)
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:t)和年利润
(单位:千元)的影响.对近8年的年宣传费
和年销售量
(i=1,2,…,8)数据作了初步处理,得到右面的散点图及一些统计量的值.
![]()
|
|
|
|
|
|
|
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中
, ![]()
(1)根据散点图判断,
与
哪一个适宜作为年销售量
关于年宣传费
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立
关于
的回归方程;
(3)已知这种产品的年利润
与
的关系为
.根据(2)的结果回答下列问题:
①年宣传费
=49时,年销售量及年利润的预报值是多少?
②年宣传费
为何值时,年利润的预报值最大?
附:对于一组数据
,
…,
,其回归直线
的斜率和截距的最小二乘估计分别为
![]()