题目内容

设S是△ABC的面积,A、B、C的对边分别为a、b、c,且2SsinA<(
BA
BC
)
sinB,则(  )
A.△ABC是钝角三角形
B.△ABC是锐角三角形
C.△ABC可能为钝角三角形,也可能为锐角三角形
D.无法判断
∵2SsinA<(
BA
BC
)
sinB,
∴2×
1
2
bcsinA×sinA<bcacosBsinB,
又由bsinA=asinB>0,
则cosB>sinA>0,A、B均是锐角,
而cosB=sin(90°-B),
故有sin(90°-B)>sinA,即90°-B>A,
则A+B<90°,∠C>90°,
即cosB是一个正值,
∴△ABC是钝角三角形,
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网