题目内容

5.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,对任意的a,b∈R都有f(a+b)=f(a)•f(b)且对任意的x∈R,恒有f(x)>0;
(1)求f(0);
(2)证明:函数y=f(x)在R上是增函数;
(3)若f(x)•f(2x-x2)>1,求x的取值范围.

分析 (1)利用a=b=0,直接求解函数值即可.
(2)结合已知条件,利用函数的单调性的定义直接证明即可.
(3)利用已知条件转化为二次不等式求解即可.

解答 解:(1)令a=b=0,f(0)=[f(0)]2,又∵f(0)≠0,∴f(0)=1(2分)
(2)证明:设任意x1<x2,则x2-x1>0,∴f(x2-x1)>1,
f(x2)=f[(x2-x1)+x1]=f(x2-x1)•f(x1),
∵f(x1)>0,∴$\frac{{f({x_2})}}{{f({x_1})}}=f({x_2}-{x_1})>1$,
∴f(x2)>f(x1),
∴函数y=f(x)在R上是增函数;(7分)
(3)f(x)f(2x-x2)=f(3x-x2)>f(0),
∵f(x)是R上增函数,
∴3x-x2>0,
∴0<x<3(12分)

点评 本题考查抽象函数的应用,赋值法以及转化思想的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网