题目内容
数列{
}的前n项和是Sn,使Sn<T恒成立的最小正数T是
.
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2 |
分析:先裂项求和,再考虑其极限值,即可得到使Sn<T恒成立的最小正数T.
解答:解:由题意,an=
=
(
-
)
∴数列{
}的前n项和是Sn=
(
-
+
-
+…+
-
)
=
(1-
)=
∵n→+∞,
→
∴使Sn<T恒成立的最小正数T是
故答案为:
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴数列{
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
∵n→+∞,
| n |
| 2n+1 |
| 1 |
| 2 |
∴使Sn<T恒成立的最小正数T是
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:本题考查裂项法求数列的和,考查极限思想,属于中档题.
练习册系列答案
相关题目