题目内容
已知数列{ an}的前n项和为Sn,a1=1,Sn+1=4an+1,设bn=an+1-2an.
(Ⅰ)证明数列{bn}是等比数列;
(Ⅱ)数列{cn}满足cn=
(n∈N*),设Tn=c1c2+c2c3+c3c4+,…+cncn+1,求证,对一切n∈N*不等式Tn<
恒成立.
(Ⅰ)证明数列{bn}是等比数列;
(Ⅱ)数列{cn}满足cn=
| 1 |
| log2bn+3 |
| 1 |
| 4 |
证明:(Ⅰ)由于Sn+1=4an+1,①
当n≥2时,Sn=4an-1+1. ②
①-②得 an+1=4an-4an-1. 所以an+1-2an=2(an-2an-1).
又bn=an+1-2an,所以bn=2bn-1.
因为a1=1,且a1+a2=4a1+1,所以a2=3a1+1=4. 所以b1=a2-2a1=2.
故数列{bn}是首项为2,公比为2的等比数列.
(Ⅱ)由(Ⅰ)可知bn=2n,则cn=
=
(n∈N*).
Tn=c1c2+c2c3+c3c4+…+cncn+1
=
+
+
+…+
=
-
+
-
+…+
-
=
-
<
.
当n≥2时,Sn=4an-1+1. ②
①-②得 an+1=4an-4an-1. 所以an+1-2an=2(an-2an-1).
又bn=an+1-2an,所以bn=2bn-1.
因为a1=1,且a1+a2=4a1+1,所以a2=3a1+1=4. 所以b1=a2-2a1=2.
故数列{bn}是首项为2,公比为2的等比数列.
(Ⅱ)由(Ⅰ)可知bn=2n,则cn=
| 1 |
| log2bn+3 |
| 1 |
| n+3 |
Tn=c1c2+c2c3+c3c4+…+cncn+1
=
| 1 |
| 4×5 |
| 1 |
| 5×6 |
| 1 |
| 6×7 |
| 1 |
| (n+3)(n+4) |
=
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| n+3 |
| 1 |
| n+4 |
=
| 1 |
| 4 |
| 1 |
| n+4 |
| 1 |
| 4 |
练习册系列答案
相关题目