题目内容
已知数列{
}的前n项和为Sn,且向量
=(n,Sn),
=(4,n+3)共线.
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)求数列{
}的前n项和Tn.
| a | n |
| a |
| b |
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)求数列{
| 1 |
| nan |
分析:(Ⅰ)利用向量
=(n,Sn)与向量
=(4,n+3)共线,可知Sn=
,从而可求得a1,当n≥2时,an=Sn-Sn-1=
,检验知an=
,利用等差数列的定义即可证明数列{an}是等差数列;
(Ⅱ)由an=
,易求
=2(
-
),从而可求得Tn.
| a |
| b |
| n(n+3) |
| 4 |
| n+1 |
| 2 |
| n+1 |
| 2 |
(Ⅱ)由an=
| n+1 |
| 2 |
| 1 |
| nan |
| 1 |
| n |
| 1 |
| n+1 |
解答:证明:(Ⅰ)证明∵
=(n,Sn),
=(4,n+3)共线,
∴n(n+3)-4Sn=0,
∴Sn=
,
∴a1=S1=1,
当n≥2时,an=Sn-Sn-1=
,
又a1=1满足此式,
∴an=
;
∴an+1-an=
为常数,
∴数列{an}为首项为1,公差为
的等差数列.
(Ⅱ)∵
=
=2(
-
),
∴Tn=
+
+…+
=2(1-
+
-
+…+
-
)
=2(1-
).
=
.
| a |
| b |
∴n(n+3)-4Sn=0,
∴Sn=
| n(n+3) |
| 4 |
∴a1=S1=1,
当n≥2时,an=Sn-Sn-1=
| n+1 |
| 2 |
又a1=1满足此式,
∴an=
| n+1 |
| 2 |
∴an+1-an=
| 1 |
| 2 |
∴数列{an}为首项为1,公差为
| 1 |
| 2 |
(Ⅱ)∵
| 1 |
| nan |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 1 |
| a1 |
| 1 |
| 2a2 |
| 1 |
| nan |
=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
=
| 2n |
| n+1 |
点评:本题考查数列的求和,着重考查等差数列的判定与裂项法,考查向量共线的坐标运算,属于中档题.
练习册系列答案
相关题目