题目内容
(1)求向量
| AB |
| AC |
| BC |
(2)若长为10的线段PQ以点A为中点,问
| PQ |
| BC |
| BP |
| CQ |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)利用向量的数量积性质即可得出;
(2)利用向量的三角形法则和数量积的性质即可得出.
(2)利用向量的三角形法则和数量积的性质即可得出.
解答:
解:(1)|
+
+
|=
=
=
=
=
=8,
(2)
•
=(
+
)•(
+
)
=
•
+
•
+
•
+
•
=0+
•
+
•
+5×5×cos1800
=
•
-
•
-25=
•(
-
)-25=
•(
+
)-25
=
•
-25
=
•
-25
=
|
|•|
|•cos<
•
>-25
=
×10×5cos<
•
>-25
=25cos<
,
>
当<
•
>=00,即θ=00时,(
•
)max=25.
| AB |
| AC |
| BC |
(
|
=
|
=
32+42+52+2×3×4×0+2×3×5×(-
|
=
| 9+16+25+0-18+32 |
| 64 |
(2)
| BP |
| CQ |
| BA |
| AP |
| CA |
| AQ |
=
| BA |
| CA |
| BA |
| AQ |
| AP |
| CA |
| AP |
| AQ |
| BA |
| AQ |
| AP |
| CA |
=
| BA |
| AQ |
| AQ |
| CA |
| AQ |
| BA |
| CA |
| AQ |
| BA |
| AC |
=
| AQ |
| BC |
=
| 1 |
| 2 |
| PQ |
| BC |
=
| 1 |
| 2 |
| PQ |
| BC |
| PQ |
| BC |
=
| 1 |
| 2 |
| PQ |
| BC |
=25cos<
| PQ |
| BC |
当<
| PQ |
| BC |
| BP |
| CQ |
点评:本题考查了向量的三角形法则和数量积的性质,属于中档题.
练习册系列答案
相关题目
已知f(x)=log2(x-2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值是( )
| A、7 | B、5 | C、3 | D、4 |