搜索
题目内容
已知双曲线
,过右焦点
作双曲线的其中一条渐近线的垂线
,垂足为
,交另一条渐近线于
点,若
(其中
为坐标原点),则双曲线的离心率为( )
A.
B.
C.
D.
试题答案
相关练习册答案
B
试题分析:由题意l的方程为ax+by-ac=0,则O点到直线的距离
,∵
,∴
,又在
中,
,设点Q的坐标为(m,n),则在
中,利用面积相等得
,∴
,联立方程
消x得Q的纵坐标
,∴
,∴
,∴
,∴
,故选B
点评:解决此类问题的关键是利用题目条件找到关于a、b、c的等式关系,然后利用双曲线离心率的定义求解
练习册系列答案
快速课课通系列答案
李庚南初中数学自选作业系列答案
大儒教育练测考系列答案
亮点给力考点激活系列答案
领航中考系列答案
领跑中考系列答案
龙门之星系列答案
初中毕业学业考试指南系列答案
绿色新课堂中考总复习系列答案
中考数学合成演练30天系列答案
相关题目
已知椭圆
的对称轴为坐标轴,焦点是(0,
),(0,
),又点
在椭圆
上.
(1)求椭圆
的方程;
(2)已知直线
的斜率为
,若直线
与椭圆
交于
、
两点,求
面积的最大值.
已知点B(0,1),点C(0,—3),直线PB、PC都是圆
的切线(P点不在y轴上).
(I)求过点P且焦点在x轴上抛物线的标准方程;
(II)过点(1,0)作直线
与(I)中的抛物线相交于M、N两点,问是否存在定点R,使
为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。
如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N (点M在点N的右侧),且
。椭圆D:
的焦距等于
,且过点
( I ) 求圆C和椭圆D的方程;
(Ⅱ) 若过点M的动直线
与椭圆D交于A、B两点,若点N在以弦AB为直径的圆的外部,求直线
斜率的范围。
若直线
与抛物线
交于
、
两点,则线段
的中点坐标是
。
已知离心率为
的椭圆
上的点到左焦点
的最长距离为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,过椭圆的左焦点
任作一条与两坐标轴都不垂直的弦
,若点
在
轴上,且使得
为
的一条内角平分线,则称点
为该椭圆的“左特征点”,求椭圆的“左特征点”
的坐标.
椭圆
与
轴负半轴交于点
,
为椭圆第一象限上的点,直线
交椭圆于另一点
,椭圆左焦点为
,连接
交
于点D。
(1)如果
,求椭圆的离心率;
(2)在(1)的条件下,若直线
的倾斜角为
且△ABC的面积为
,求椭圆的标准方程。
已知椭圆C:
的离心率为
,右焦点到直线
的距离为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线
与椭圆C交于A、B两点,且线段AB中点恰好在直线
上,求△OAB的面积S的最大值.(其中O为坐标原点).
抛物线
的焦点为
,过焦点
倾斜角为
的直线交抛物线于
,
两点,点
,
在抛物线准线上的射影分别是
,
,若四边形
的面积为
,则抛物线的方程为____
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案