题目内容

若函数f(x)= sin2ax-sinaxcosax(a>0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次成公差为的等差数列.

(1)求m的值;

(2)若点Ax0,y0)是y=f(x)图象的对称中心,且x0∈[0,],求点A的坐标.

解:(1)f(x)=[(1-cos2ax)-sin2ax]?

=-(sin2ax+cos2ax)+?

=-sin(2ax+)+.                                                                                           ?

y=f(x)的图象与y=M相切,?

Mf(x)的最大值或最小值,?

M=1+M=1-.                                                                                   ?

(2)又∵切点横坐标依次成公差为的等差数列,?

f(x)最小正周期为.?

T==,a>0,∴a=2,                                                                                      ?

f(x)=-sin(4x+)+.                                                                                   ?

令sin(4x+)=0,则4x0+=(k∈Z),?

x0=-.                                                                                                           ?

由0≤-πk∈Z.得k=1,2,3.?

因此对称中心为(π, )、(π,)、(π,).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网