ÌâÄ¿ÄÚÈÝ
. ÒÑÖªº¯Êýf(x)=ax2+axºÍg(x)=x-a,ÆäÖÐa??RÇÒa??0£®
£¨1£©Èôº¯Êýf(x)Óëg(x)µÄͼÏñµÄÒ»¸ö¹«¹²µãÇ¡ºÃÔÚxÖáÉÏ,Çó
掙术
£¨2£©Èôº¯Êýf(x)Óëg(x)ͼÏñÏཻÓÚ²»Í¬µÄÁ½µãA¡¢B,OÎª×ø±êÔµã,ÊÔÎÊ£º¡÷OABµÄÃæ»ýSÓÐûÓÐ×îÖµ?Èç¹ûÓÐ,Çó³ö×îÖµ¼°Ëù¶ÔÓ¦µÄ
µÄÖµ£»Èç¹ûûÓÐ,Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÈôpºÍqÊÇ·½³Ìf(x)=g(x)µÄÁ½¸ù,ÇÒÂú×ã0<p<q<,Ö¤Ã÷£ºµ±x??(0,p)ʱ,g(x)<f(x)<p-a.£®
(¢ñ)
(¢ò) µ±
ʱ£¬
ÓÐ×î´óÖµ
£¬
ÎÞ×îСֵ £¨¢ó£©![]()
½âÎö:
£¨¢ñ£©É躯Êý
ͼÏñÓëxÖáµÄ½»µã×ø±êΪ(
,0).
¡ßµã£¨
£¬0£©Ò²ÔÚº¯Êý
µÄͼÏñÉÏ£¬¡à
£®¶ø
£¬¡à
£®--4·Ö
£¨¢ò£©ÒÀÌâÒ⣬
£¬¼´
£¬ÕûÀí£¬µÃ
£¬(*)
¡ß
£¬º¯Êý
Óë
ͼÏñÏཻÓÚ²»Í¬µÄÁ½µãA¡¢B£¬
¡à
£¬¼´¡÷=
=
£½(3
-1)(-
-1)>0.¡à-1<
<
ÇÒ
. -6·Ö
ÉèA(
£¬
)£¬B(
£¬
)£¬ÇÒ
<
£¬ÓÉ(*)µÃ£¬![]()
=1>0,
.
Ôò
==.--------8·Ö
ÉèµãOµ½Ö±Ïßg(x)=x-a,µÄ¾àÀëΪd£¬Ôò
£¬
¡à
£½![]()
![]()
=![]()
.-10·Ö
¡ß-1<
<
ÇÒ
,¡àµ±
ʱ£¬
ÓÐ×î´óÖµ
£¬
ÎÞ×îСֵ. ----12·Ö
£¨¢ó£©ÓÉÌâÒâ¿ÉÖª
£®
,¡à
,
¡àµ±
ʱ£¬
¼´
£®--------14·Ö
ÓÖ
,
¡à
<0, ¡à
.
×ÛÉÏ¿ÉÖª£¬
£®-----16·Ö
|
A¡¢(
| ||||
B¡¢£¨
| ||||
C¡¢£¨
| ||||
D¡¢[
|