题目内容

  如图所示,直线y=kx分抛物线y=x-x2与x轴所围图形为面积相等的两部分,求k的值.

                                          

1-


解析:

  抛物线y=x-x2与x轴两交点的横坐标x1=0,x2=1,所以抛物线与x轴所围图形的面积

S=(x-x2)dx=()|

=-=.                                                                                                              6分

抛物线y=x-x2与y=kx两交点的横坐标为

x1′=0,x2′=1-k,                                                                                                   9分

所以=(x-x2-kx)dx

=|

=(1-k),                                                                                                            12分

又知S=,所以(1-k)=

于是k=1-=1-.                                                                                         14分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网