题目内容

已知数列{an}中的各项均为正数,且满足a1=2,
an+1-1
an-1
=
2an
an+1
(n∈N*)
.记bn=an2-an,数列{bn}的前n项和为xn,且f(xn)=
1
2
xn

(Ⅰ)数列{bn}和{an}的通项公式;
(Ⅱ)求证:
n-1
2
f(x1)
f(x2)
+
f(x2)
f(x3)
+…+
f(xn)
f(xn+1)
n
2
(n∈N*)
分析:(1)整理
an+1-1
an-1
=
2an
an+1
得an+12-an+1=2(an2-an),代入bn=an2-an,中进而可知数列{bn}是公比和首项均为2的等比数列,公比为2,进而数列{bn}的通项公式可得.把bn代入bn=an2-an,求得an
(2)根据等比数列求和公式可求的xn,进而可知f(xn)的解析式.进而可求得
f(xk)
f(xk+1)
结果小于
1
2
进而可知
f(x1)
f(x2)
+
f(x2)
f(x3)
+…+
f(xn)
f(xn+1)
n
2
(n∈N*)
,根据
f(xk)
f(xk+1)
=
2k-1
2k+1-1
=
1
2
-
1
2(2k+1-1)
大于
1
2
-
1
2k+1
,进而根据等比数列求和公式可证明
n-1
2
f(x1)
f(x2)
+
f(x2)
f(x3)
++
f(xn)
f(xn+1)
解答:解:(I)
an+1-1
an-1
=
2an
an+1
?
a
2
n+1
-an+1=2(
a
2
n
-an)

∵bn=an2-an,bn+1=2bn
∴数列{bn}是公比和首项均为2的等比数列,
∴bn=2n
a
2
n
-an=2n?an=
1+
1+2n+2
2
(∵an>0).

(II)证明:因为等比数列{bn}的前n项和xn=
2(2n-1)
2-1
=2n+1-2

所以f(xn)=2n-1.
f(xk)
f(xk+1)
=
2k-1
2k+1-1
=
2k-1
2(2k-
1
2
)
1
2
,k=1,2,3,,n

所以
f(x1)
f(x2)
+
f(x2)
f(x3)
++
f(xn)
f(xn+1)
n
2
.

另一方面
f(xk)
f(xk+1)
=
2k-1
2k+1-1
=
1
2
-
1
2(2k+1-1)

=
1
2
-
1
2k+1+2kk+1-2
1
2
-
1
2k+1
,k=1,2,,n.

f(x1)
f(x2)
+
f(x2)
f(x3)
++
f(xn)
f(xn+1)

n
2
-(
1
22
+
1
23
++
1
2n+1
)=
n
2
-
1
2
(1-
1
2n
)>
n-1
2
.

n-1
2
f(x1)
f(x2)
+
f(x2)
f(x3)
++
f(xn)
f(xn+1)
n
2
.
点评:本题主要考查了数列的递推式.数列的通项公式和求和问题与不等式、对数函数、幂函数等问题综合考查是近几年高考的热点题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网