题目内容
已知数列{an}中的各项均为正数,且满足a1=2,| an+1-1 |
| an-1 |
| 2an |
| an+1 |
| 1 |
| 2 |
(Ⅰ)数列{bn}和{an}的通项公式;
(Ⅱ)求证:
| n-1 |
| 2 |
| f(x1) |
| f(x2) |
| f(x2) |
| f(x3) |
| f(xn) |
| f(xn+1) |
| n |
| 2 |
分析:(1)整理
=
得an+12-an+1=2(an2-an),代入bn=an2-an,中进而可知数列{bn}是公比和首项均为2的等比数列,公比为2,进而数列{bn}的通项公式可得.把bn代入bn=an2-an,求得an.
(2)根据等比数列求和公式可求的xn,进而可知f(xn)的解析式.进而可求得
结果小于
进而可知
+
+…+
<
(n∈N*),根据
=
=
-
大于
-
,进而根据等比数列求和公式可证明
<
+
++
.
| an+1-1 |
| an-1 |
| 2an |
| an+1 |
(2)根据等比数列求和公式可求的xn,进而可知f(xn)的解析式.进而可求得
| f(xk) |
| f(xk+1) |
| 1 |
| 2 |
| f(x1) |
| f(x2) |
| f(x2) |
| f(x3) |
| f(xn) |
| f(xn+1) |
| n |
| 2 |
| f(xk) |
| f(xk+1) |
| 2k-1 |
| 2k+1-1 |
| 1 |
| 2 |
| 1 |
| 2(2k+1-1) |
| 1 |
| 2 |
| 1 |
| 2k+1 |
| n-1 |
| 2 |
| f(x1) |
| f(x2) |
| f(x2) |
| f(x3) |
| f(xn) |
| f(xn+1) |
解答:解:(I)
=
?
-an+1=2(
-an),
∵bn=an2-an,bn+1=2bn,
∴数列{bn}是公比和首项均为2的等比数列,
∴bn=2n,
即
-an=2n?an=
(∵an>0).
(II)证明:因为等比数列{bn}的前n项和xn=
=2n+1-2,
所以f(xn)=2n-1.
故
=
=
<
,k=1,2,3,,n,
所以
+
++
<
.
另一方面
=
=
-
,
=
-
>
-
,k=1,2,,n.
∴
+
++
≥
-(
+
++
)=
-
(1-
)>
.
∴
<
+
++
<
.
| an+1-1 |
| an-1 |
| 2an |
| an+1 |
| a | 2 n+1 |
| a | 2 n |
∵bn=an2-an,bn+1=2bn,
∴数列{bn}是公比和首项均为2的等比数列,
∴bn=2n,
即
| a | 2 n |
1+
| ||
| 2 |
(II)证明:因为等比数列{bn}的前n项和xn=
| 2(2n-1) |
| 2-1 |
所以f(xn)=2n-1.
故
| f(xk) |
| f(xk+1) |
| 2k-1 |
| 2k+1-1 |
| 2k-1 | ||
2(2k-
|
| 1 |
| 2 |
所以
| f(x1) |
| f(x2) |
| f(x2) |
| f(x3) |
| f(xn) |
| f(xn+1) |
| n |
| 2 |
另一方面
| f(xk) |
| f(xk+1) |
| 2k-1 |
| 2k+1-1 |
| 1 |
| 2 |
| 1 |
| 2(2k+1-1) |
=
| 1 |
| 2 |
| 1 |
| 2k+1+2kk+1-2 |
| 1 |
| 2 |
| 1 |
| 2k+1 |
∴
| f(x1) |
| f(x2) |
| f(x2) |
| f(x3) |
| f(xn) |
| f(xn+1) |
≥
| n |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n+1 |
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n |
| n-1 |
| 2 |
∴
| n-1 |
| 2 |
| f(x1) |
| f(x2) |
| f(x2) |
| f(x3) |
| f(xn) |
| f(xn+1) |
| n |
| 2 |
点评:本题主要考查了数列的递推式.数列的通项公式和求和问题与不等式、对数函数、幂函数等问题综合考查是近几年高考的热点题目.
练习册系列答案
相关题目