题目内容
已知数列{an}中的相邻两项a2k-1,a2k是关于x的方程x2-(3k+2k)x+3k•2k=0的两个根,且a2k-1≤a2k(k=1,2,3,…).(Ⅰ)求a1,a3,a5,a7;
(Ⅱ)求数列{an}的前2n项和S2n;
(Ⅲ)记f(n)=
| 1 |
| 2 |
| |sinn| |
| sinn |
| (-1)f(2) |
| a1a2 |
| (-1)f(3) |
| a3a4 |
| (-1)f(4) |
| a5a6 |
| (-1)f(n+1) |
| a2n-1a2n |
| 1 |
| 6 |
| 5 |
| 24 |
分析:(1)用解方程或根与系数的关系表示a2k-1,a2k,k赋值即可.
(2)由S2n=(a1+a2)+…+(a2n-1+a2n)可分组求和.
(3)Tn复杂,常用放缩法,但较难.
(2)由S2n=(a1+a2)+…+(a2n-1+a2n)可分组求和.
(3)Tn复杂,常用放缩法,但较难.
解答:解:(Ⅰ)解:方程x2-(3k+2k)x+3k•2k=0的两个根为x1=3k,x2=2k,
当k=1时,x1=3,x2=2,所以a1=2;
当k=2时,x1=6,x2=4,所以a3=4;
当k=3时,x1=9,x2=8,所以a5=8时;
当k=4时,x1=12,x2=16,所以a7=12.
(Ⅱ)解:S2n=a1+a2+…+a2n=(3+6+…+3n)+(2+22+…+2n)=
+2n+1-2.
(Ⅲ)证明:Tn=
+
-
+…+
,
所以T1=
=
,T2=
+
=
.
当n≥3时,Tn=
+
-
+…+
≥
+
-(
+…+
)≥
+
-
(
+…+
)=
+
-
(1-
)>
,
同时,Tn=
-
-
+…+
≤
-
+(
+…+
)≤
-
+
(
+…+
)=
-
+
•
(1-
)<
.
综上,当n∈N*时,
≤Tn≤
.
当k=1时,x1=3,x2=2,所以a1=2;
当k=2时,x1=6,x2=4,所以a3=4;
当k=3时,x1=9,x2=8,所以a5=8时;
当k=4时,x1=12,x2=16,所以a7=12.
(Ⅱ)解:S2n=a1+a2+…+a2n=(3+6+…+3n)+(2+22+…+2n)=
| 3n2+3n |
| 2 |
(Ⅲ)证明:Tn=
| 1 |
| a1a2 |
| 1 |
| a3a4 |
| 1 |
| a5a6 |
| (-1)f(n+1) |
| a2n-1a2n |
所以T1=
| 1 |
| a1a2 |
| 1 |
| 6 |
| 1 |
| a1a2 |
| 1 |
| a3a4 |
| 5 |
| 24 |
当n≥3时,Tn=
| 1 |
| 6 |
| 1 |
| a3a4 |
| 1 |
| a5a6 |
| (-1)f(n+1) |
| a2n-1a2n |
| 1 |
| 6 |
| 1 |
| a3a4 |
| 1 |
| a5a6 |
| 1 |
| a2n-1a2n |
| 1 |
| 6 |
| 1 |
| 6•22 |
| 1 |
| 6 |
| 1 |
| 23 |
| 1 |
| 2n |
| 1 |
| 6 |
| 1 |
| 6•22 |
| 1 |
| 24 |
| 1 |
| 2n-3 |
| 1 |
| 6 |
同时,Tn=
| 5 |
| 24 |
| 1 |
| a5a6 |
| 1 |
| a7a8 |
| (-1)f(n+1) |
| a2n-1a2n |
| 5 |
| 24 |
| 1 |
| a5a6 |
| 1 |
| a7a8 |
| 1 |
| a2n-1a2n |
| 5 |
| 24 |
| 1 |
| 9•23 |
| 1 |
| 9 |
| 1 |
| 24 |
| 1 |
| 2n |
| 5 |
| 24 |
| 1 |
| 9•23 |
| 1 |
| 9 |
| 1 |
| 23 |
| 1 |
| 2n-3 |
| 5 |
| 24 |
综上,当n∈N*时,
| 1 |
| 6 |
| 5 |
| 24 |
点评:本题主要考查等差、等比数列的基本知识,考查运算及推理能力.本题属难题,一般要求做(1),(2)即可,让学生掌握常见方法,对(3)不做要求.
练习册系列答案
相关题目