题目内容
若椭圆
的左、右焦点分别为F1,F2,椭圆的离心率为
:2.(1)过点C(-1,0)且以向量
为方向向量的直线
交椭圆于不同两点A、B,若
,则当△OAB的面积最大时,求椭圆的方程。
(2)设M,N为椭圆上的两个动点,
,过原点O作直线MN的垂线OD,垂足为D,求点D的轨迹方程.
(1)
(2)![]()
解析试题分析:(1)
,设椭圆的方程为![]()
依题意,直线
的方程为:![]()
由![]()
设![]()
![]()
![]()
当且仅当![]()
此时
(2)设点
的坐标为
.
当
时,由
知,直线
的斜率为
,所以直线
的方程为
,或
,其中
,
.
点
的坐标满足方程组![]()
得
,整理得
,
于是
,
.![]()
.
由
知
.
,
将
代入上式,整理得
.
当
时,直线
的方程为
,
的坐标满足方程组
所以
,
.
由
知
,即
,
解得
.
这时,点
的坐标仍满足
.
综上,点
的轨迹方程为 ![]()
考点:直线与圆锥曲线的综合问题;椭圆的标准方程
点评:本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系,抛物线的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
练习册系列答案
相关题目