题目内容
9.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0)有相同焦点,它们的公共点在x轴上的射影为其中一个焦点,若它们的离心率分别为e1,e2,则e1•e2=1.分析 设F(c,0),把F分别代入椭圆与双曲线方程可得:化为b2(1-$\frac{{c}^{2}}{{a}^{2}}$)=n2($\frac{{c}^{2}}{{m}^{2}}$-1),又c2=m2+n2=a2-b2,可得:$\frac{{b}^{2}}{a}$=$\frac{{n}^{2}}{m}$,设a=km,则b=$\sqrt{k}$n,k=$\frac{{n}^{2}}{{m}^{2}}$+1=$\frac{{c}^{2}}{{m}^{2}}$,即可得出结论.
解答 解:设F(c,0),把F分别代入椭圆与双曲线方程可得:$\frac{{c}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,$\frac{{c}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1
化为b2(1-$\frac{{c}^{2}}{{a}^{2}}$)=n2($\frac{{c}^{2}}{{m}^{2}}$-1),
又c2=m2+n2=a2-b2,
可得:$\frac{{b}^{2}}{a}$=$\frac{{n}^{2}}{m}$,
设a=km,则b=$\sqrt{k}$n,∴k=$\frac{{n}^{2}}{{m}^{2}}$+1=$\frac{{c}^{2}}{{m}^{2}}$
∴e1•e2=$\frac{c}{a}•\frac{c}{m}$=$\frac{{c}^{2}}{k{m}^{2}}$=1.
故答案为:1.
点评 本题考查了椭圆与双曲线的标准方程及其性质,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目
4.已知A、B是半径为R的球O的球面上两点,∠AOB=α,C为球面上的动点,若三棱锥O-ABC的体积最大,则α和最大体积分别为( )
| A. | $\frac{π}{3}$,$\frac{1}{6}$R3 | B. | $\frac{π}{3}$,$\frac{1}{3}$R3 | C. | $\frac{π}{2}$,$\frac{1}{3}$R3 | D. | $\frac{π}{2}$,$\frac{1}{6}$R3 |
6.若实数a,b在区间[0,$\sqrt{2}$]上取值,则函数f(x)=$\frac{2}{3}$ax3+bx2+ax在R上有两个相异极值点的概率是( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{\sqrt{2}}{8}$ | D. | $\frac{1}{2}$ |