题目内容
数列{an}中,a3=1,a1+a2+…+an=an+1(n=1,2,3…).
(1)求a1,a2的值;
(2)求数列{an}的前n项和Sn及数列{an}的通项公式;
(3)设bn=log2Sn,存在数列{cn}使得cn•bn+3•bn+4=1+n(n+1)(n+2)Sn,试求数列{cn}的前n项和Tn.
(1)求a1,a2的值;
(2)求数列{an}的前n项和Sn及数列{an}的通项公式;
(3)设bn=log2Sn,存在数列{cn}使得cn•bn+3•bn+4=1+n(n+1)(n+2)Sn,试求数列{cn}的前n项和Tn.
分析:(1)由a1+a2+…+an=an+1,a3=1,分别令n=1可求a1,a2
(2)由已知可得,sn=an+1=sn+1-sn,结合等比数列的通项公式可求sn,进而可求an
(3)由(2)可求bn=log2Sn=n-2,代入已知可求cn,然后利用分组求和及裂项求和、错位相减即可求解数列的和
(2)由已知可得,sn=an+1=sn+1-sn,结合等比数列的通项公式可求sn,进而可求an
(3)由(2)可求bn=log2Sn=n-2,代入已知可求cn,然后利用分组求和及裂项求和、错位相减即可求解数列的和
解答:解:(1)∵a1+a2+…+an=an+1,a3=1
令n=1可得,a1=a2
令n=2可得,a1+a2=a3=1
∴a1=
,a2=
;….(2分)
(2)∵a1+a2+…+an=an+1,即sn=an+1=sn+1-sn
∴sn+1=2sn
∵a1=s1=
∴{sn}是以
为首项,以2为公比的等比数列
∴sn=
•2n-1
即Sn=2n-2;….(3分)
∴an+1=sn=2n-2
∴an=
…(3分)
(3)∵bn=log2Sn=n-2
又∵cn•bn+3•bn+4=1+n(n+1)(n+2)Sn,
∴cn=
∴cn=
+n•2n-2…(3分)
∵
+
+…+
=
-
+
-
+…+
-
=
-
=
设A=1•2-1+2•20+…+n•2n-2
∴2A=1•20+2•2+…+(n-1)•2n-2+n•2n-1
两式相减可得,-A=2-1+20+…+2n-2-n•2n-1=
-n•2n-2×2
=
(2n-1)-n•2n-2×2=2n-1-
-n•2n-1
∴A=(n-1)•2n-1+
∴c1+c2+…+cn=
+
+…+
+1•2-1+2•20+…+n•2n-2
=
-
+(n-1)•2n-1+
=1-
+(n-1)•2n-1
∴c1+c2+…+cn=(n-1)•2n-1+
….(3分)
令n=1可得,a1=a2
令n=2可得,a1+a2=a3=1
∴a1=
| 1 |
| 2 |
| 1 |
| 2 |
(2)∵a1+a2+…+an=an+1,即sn=an+1=sn+1-sn
∴sn+1=2sn
∵a1=s1=
| 1 |
| 2 |
∴{sn}是以
| 1 |
| 2 |
∴sn=
| 1 |
| 2 |
即Sn=2n-2;….(3分)
∴an+1=sn=2n-2
∴an=
|
(3)∵bn=log2Sn=n-2
又∵cn•bn+3•bn+4=1+n(n+1)(n+2)Sn,
∴cn=
| 1+n(n+1)(n+2)•2n-2 |
| (n+1)(n+2) |
∴cn=
| 1 |
| (n+1)(n+2) |
∵
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| (n+1)(n+2) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| n+2 |
| n |
| 2(n+2) |
设A=1•2-1+2•20+…+n•2n-2
∴2A=1•20+2•2+…+(n-1)•2n-2+n•2n-1
两式相减可得,-A=2-1+20+…+2n-2-n•2n-1=
| ||
| 1-2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
∴A=(n-1)•2n-1+
| 1 |
| 2 |
∴c1+c2+…+cn=
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| (n+1)(n+2) |
=
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
∴c1+c2+…+cn=(n-1)•2n-1+
| n+1 |
| n+2 |
点评:本题主要考查了利用数列的递推公式求解数列的通项、等比数列的通项公式的应用及数列的分组求和、裂项求和、错位相减求和方法的应用.
练习册系列答案
相关题目
数列{an}中,a3=2,a7=1,若{
}为等差数列,则a11=( )
| 1 |
| an+1 |
| A、0 | ||
B、
| ||
C、
| ||
| D、2 |