题目内容
双曲线-=-1(a>0,b>0)与抛物线y=x2有一个公共焦点F,双曲线上过点F且垂直实轴的弦长为,则双曲线的离心率等于________.
若函数f(x)在区间[-2,2]上的图象是连续不断的曲线,且f(x)在(-2,2)内有一个零点,则f(-2)·f(2)的值( )
A.大于0 B.小于0
C.等于0 D.不能确定
已知直线l:y=-(x-1)与圆O:x2+y2=1在第一象限内交于点M,且l与y轴交于点A,则△MOA的面积等于________.
已知椭圆方程为+x2=1,斜率为k(k≠0)的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(1)求m的取值范围;
(2)求△MPQ面积的最大值.
双曲线-=1的离心率为,则m等于________.
已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点.若AB的中点的坐标为(2,2),则直线l的方程为________.
与的等差中项是 。
某个公园有个池塘,其形状为直角三角形, ,米,米。
(1)现在准备养一批供游客观赏的鱼,分别在、、上取点、、,并且,,(如图1),游客要在内喂鱼,希望面积越大越好。设(米),用表示面积,并求出的最大值;
(2)现在准备新建造一个走廊,方便游客通行,分别在、、上取点、、,建造正走廊(不考虑宽度)(如图2),游客希望周长越小越好。设,用表示的周长,并求出的最小值。
已知=,
(1)将化简成含有的形式; (2)若,求的值.