题目内容

(类型A)已知函数f(x)=x3+ax2+x+1,a∈R.
(1)讨论函数f(x)的单调区间;
(2)设函数f(x)在区间(-
2
3
,-
1
3
)
内是减函数,求a的取值范围.
(类型B)已知函数f(x)=x3-ax+1,a∈R.
(1)讨论函数f(x)的单调区间;
(2)设函数f(x)在区间(-
2
3
,-
1
3
)
内是减函数,求a的取值范围.
(类型A)(1)f(x)=x3+ax2+x+1∴f'(x)=3x2+2ax+1
当a2≤3时,即 -
3
≤a≤
3
时,△≤0,f'(x)≥0,f(x)在R上递增.
当a2>3时,即 a<-
3
a>
3
时,△>0,f'(x)=0求得两根为 x=
-a±
a2-3
3

即f(x)在 (-∞,
-a-
a2-3
3
)
(
-a+
a2-3
3
,+∞)
上递增,在 (
-a-
a2-3
3
-a+
a2-3
3
)
递减.
(2)f'(x)=3x2+2ax+1≤0在 (-
2
3
,-
1
3
)
恒成立.
2a≥
-1-3x2
x
(-
2
3
,-
1
3
)
恒成立.
可知
-1-3x2
x
(-
2
3
,-
3
3
)
上为减函数,在 (-
3
3
,-
1
3
)
上为增函数.
-1-3x2
x
<4

所以a≥2.a的取值范围是[2,+∞).
(类型B)(1)f(x)=x3-ax+1∴f'(x)=3x2-a
当a≤0时,f'(x)≥0,f(x)在R上递增.
当a>0时,f'(x)=0求得两根为x=±
a
3

即f(x)在(-∞,
a
3
),(
a
3
,+∞)上递增,在(-
a
3
a
3
)递减.
(2)f'(x)=3x2-a≤0在 (-
2
3
,-
1
3
)
恒成立.
即a≥3x2(-
2
3
,-
1
3
)
恒成立.
可知3x2在(-
2
3
-
1
3
)上为减函数,
所以a≥
4
3
.a的取值范围是[
4
3
,+∞).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网