题目内容

经过两条直线2x-y-3=0和4x-3y-5=0的交点,并且与直线2x+3y+5=0平行的直线方程的一般式为
2x+3y-7=0
2x+3y-7=0
分析:设所求的直线方程为2x+3y+k=0,把2x-y-3=0和4x-3y-5=0的交点(2,1)代入可得 k值,即得所求的直线方程.
解答:解:设所求的直线方程为2x+3y+k=0,由它过2x-y-3=0和4x-3y-5=0的交点(2,1),
∴4+3+k=0,∴k=-7,故所求的直线方程为 2x+3y-7=0,
故答案为 2x+3y-7=0.
点评:本题考查用待定系数法求直线方程,与直线2x+3y+5=0平行的直线可设为2x+3y+k=0 的形式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网