题目内容
设z=
+
i(i是虚数单位),则z+2z2+3z3+4z4+5z5+6z6=( )
| 1 |
| 2 |
| ||
| 2 |
| A.6z | B.6z2 | C.6
| D.-6z |
∵z=
+
i=cos
+isin
,
z+2z2+3z3+4z4+5z5+6z6=cos
+isin
+2cos
+2sin
i+3cosπ
+3sinπi+4cos
+4sin
i+5cos
+5sin
i+6cos2π+6sin2πi
=6(
-
i)=6
故选C.
| 1 |
| 2 |
| ||
| 2 |
| π |
| 3 |
| π |
| 3 |
z+2z2+3z3+4z4+5z5+6z6=cos
| π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
+3sinπi+4cos
| 4π |
| 3 |
| 4π |
| 3 |
| 5π |
| 3 |
| 5π |
| 3 |
=6(
| 1 |
| 2 |
| ||
| 2 |
| . |
| z |
故选C.
练习册系列答案
相关题目