题目内容

(2010•江苏)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若
a
b
+
b
a
=6cosC,则
tanC
tanA
+
tanC
tanB
的值是
4
4
分析:
a
b
+
b
a
=6cosC,结合余弦定理可得,a2+b2=
3c2
2
,而化简
tanC
tanA
+
tanC
tanB
=
sin2C
sinAsinBcosC
=
c2
abcosC
,代入可求
解答:解:∵
a
b
+
b
a
=6cosC,
由余弦定理可得,
a2+b2
ab
=6•
a2+b2-c2
2ab

a2+b2=
3c2
2

tanC
tanA
+
tanC
tanB
=
cosAsinC
cosCsinA
+
cosBsinC
cosCsinB
=
sinC
cosC
(
cosA
sinA
 +
cosB
sinB
)

=
sinC
cosC
sinBcosA+sinAcosB
sinAsinB
=
sin2C
sinAsinBcosC
=
c2
abcosC

=
c2
ab
2ab
a2+b2-c2
=
2c2
3c2
2
-c2
=4

故答案为:4
点评:本题主要考查了三角形的 正弦定理与余弦定理的综合应用求解三角函数值,属于基本公式的综合应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网