题目内容
(2010•江苏)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若
+
=6cosC,则
+
的值是
| a |
| b |
| b |
| a |
| tanC |
| tanA |
| tanC |
| tanB |
4
4
.分析:由
+
=6cosC,结合余弦定理可得,a2+b2=
,而化简
+
=
=
,代入可求
| a |
| b |
| b |
| a |
| 3c2 |
| 2 |
| tanC |
| tanA |
| tanC |
| tanB |
| sin2C |
| sinAsinBcosC |
| c2 |
| abcosC |
解答:解:∵
+
=6cosC,
由余弦定理可得,
=6•
∴a2+b2=
则
+
=
+
=
(
+
)
=
•
=
=
=
•
=
=4
故答案为:4
| a |
| b |
| b |
| a |
由余弦定理可得,
| a2+b2 |
| ab |
| a2+b2-c2 |
| 2ab |
∴a2+b2=
| 3c2 |
| 2 |
则
| tanC |
| tanA |
| tanC |
| tanB |
| cosAsinC |
| cosCsinA |
| cosBsinC |
| cosCsinB |
| sinC |
| cosC |
| cosA |
| sinA |
| cosB |
| sinB |
=
| sinC |
| cosC |
| sinBcosA+sinAcosB |
| sinAsinB |
| sin2C |
| sinAsinBcosC |
| c2 |
| abcosC |
=
| c2 |
| ab |
| 2ab |
| a2+b2-c2 |
| 2c2 | ||
|
故答案为:4
点评:本题主要考查了三角形的 正弦定理与余弦定理的综合应用求解三角函数值,属于基本公式的综合应用.
练习册系列答案
相关题目