题目内容

20.设函数f(x)=x3+x,x∈R,若0<θ<$\frac{π}{2}$时,不等式f(msinθ)+f(1-m)>0恒成立.则实数m的取值范围是(-∞,1].

分析 利用奇函数f(x)=x3+x单调递增的性质,可将不等式f(msinθ)+f(1-m)>0恒成立,转化为msinθ>m-1恒成立,由0<θ<$\frac{π}{2}$可求得实数m的取值范围.

解答 解:∵f(x)=x3+x,
∴f(-x)=(-x)3+(-x)=-x3-x=-f(x),
∴函数f(x)=x3+x为奇函数;
又f′(x)=3x2+1>0,
∴函数f(x)=x3+x为R上的单调递增函数.
∴f(msinθ)+f(1-m)>0恒成立?f(msinθ)>-f(1-m)=f(m-1)恒成立,
∴msinθ>m-1(0<θ<$\frac{π}{2}$)恒成立?m(1-sinθ)<1恒成立,
由0<θ<$\frac{π}{2}$知,0<sinθ<1,0<1-sinθ<1,$\frac{1}{1-sinθ}$>1
由m<$\frac{1}{1-sinθ}$恒成立知:m≤1.
∴实数m的取值范围是(-∞,1].
故答案为:(-∞,1].

点评 本题考查函数的奇偶性与单调性,突出考查转化思想与恒成立问题,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网